3D Bioprinting of human native-like tissues as disease-in-a-dish models for drug discovery
人类天然组织的 3D 生物打印作为药物发现的皿中疾病模型
基本信息
- 批准号:9355001
- 负责人:
- 金额:$ 301.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:3D PrintAdipocytesAffectAge related macular degenerationAgingAnimal ModelArchitectureBackBiological AssayBlindnessBlood VesselsBlood-Retinal BarrierBody partCancer Cell GrowthCancer PatientCardiovascular DiseasesCardiovascular systemCell Differentiation processCell physiologyCellsCellular biologyCessation of lifeChemical AgentsChicagoChildClinicalClinical TrialsCollaborationsComplexCoronary ArteriosclerosisCulture TechniquesDegenerative DisorderDermalDermisDeveloped CountriesDevelopmentDevelopmental BiologyDiseaseDisease ProgressionDisease modelElectrophysiology (science)EnvironmentEpidermisEtiologyEventEyeFailureFibroblastsFunctional disorderFutureGenesGeneticGoalsHereditary DiseaseHistocompatibility TestingHistologyHumanHydrogelsImmuneIn VitroIndividualLeukocytesLibrariesLife ExpectancyLinkMalignant NeoplasmsMalignant neoplasm of ovaryMarylandMedialMethodologyMethodsMicroscopyModelingMolecularMorphologyNational Human Genome Research InstituteNeoplasm MetastasisOmentumOperative Surgical ProceduresPathologyPatientsPatternPharmaceutical PreparationsPharmacological TreatmentPharmacologyPhenotypePhotoreceptorsPhysiologicalPhysiologyPlug-inPreclinical Drug EvaluationPredictive ValuePrintingProcessProgeriaProteinsProtocols documentationResearch PersonnelResourcesRetinaRetinal DegenerationSiteSkinSkin TissueSmooth Muscle MyocytesSoftware ToolsStagingStrokeStructureStructure of retinal pigment epitheliumSyndromeSystemTechniquesTechnologyTherapeuticTissue EngineeringTissue ModelTissuesToxic effectUnited States National Institutes of HealthUniversitiesVascular DiseasesVisionWaterage relatedbiocompatible polymerbioprintingcell typecollegedata exchangedrug discoveryhuman tissuein vivoinduced pluripotent stem cellinsightkeratinocyteneoplastic cellpreventprogramsscreeningsenescenceskin disorderstem cell technologystressortherapeutic developmentthree-dimensional modelingtissue biomarkerstumortumor microenvironment
项目摘要
The activities of the Tissue Bioprinting program include: i) Develop bioprinting protocols to fabricate native-like, functional human tissues. Ii) Validate of printed tissues: develop morphological and physiological biomarkers of tissue architecture and function by using microscopy, histology, gene sequencing, electrophysiological and other methodologies. iii) Use printed tissues for the screening of focused libraries of compounds for drug discovery. iv) Develop a framework for the sharing of validated protocols as a readily available resource for researchers to exchange data on optimized conditions for bioinks, culture techniques, cell types, and software tools as well as techniques to quantify and validate printed tissues.
Bioprinting of dermal tissue for modeling skin diseases: Skin is a complex, hierarchical and stratified tissue that provides protection from the external environment by acting as an active physical barrier into the body and regulating transport of water and other metabolites out of the body. Bioprinted human native skin models can provide fundamental insights into the etiology of skin diseases as well as elucidate the pathophysiological mechanisms in skin disease progression and discovery of treatments. Current efforts are directed to the bioprinting of consistent and reproducible human native-like dermis and epidermis layers of the skin using normal human fibroblasts and keratinocytes. Once this is achieved, we will introduce available disease patient cells to reproduce disease skin tissues that will be used as disease-in-dish models for screening.
Bioprinting of blood retinal barrier for a disease model of wet age related macular degeneration (wet AMD): Retinal degenerative diseases are the leading cause of irreversible vision loss in developed countries. In many cases the diseases originate in the homeostatic unit in the back of the eye that contains the retina, retinal pigment epithelium (RPE) and the choriocapillaris. In diseases like age-related macular degeneration (AMD), it is thought that RPE dysfunctions cause disease-initiating events and as the RPE degenerates photoreceptors begin to die and patients start losing vision. Patient-specific induced pluripotent stem (iPS) cell-derived RPE provides direct access to a patients genetics and allow the possibility of identifying the initiating events of RPE-associated degenerative diseases. Three-dimensional models of the RPE, neuroretina, and the choriocapillaris are being developed using tissue bioprinting combined with iPS cell technology and fundamental developmental biology. Analysis of disease processes at the level of this entire homeostatic unit will likely provide more insight into molecular mechanisms of retinal degenerative diseases, as well as providing a native disease model for the discovery of new treatments for AMD. This is a collaboration with the group of Dr. Kapil Bharti at NEI.
Bioprinting of a blood vessel wall model for modeling Progeria: Hutchinson-Gilford Progeria syndrome (HGPS) is a genetic disorder that, although rare, has devastating consequences to the affected children. Those with HGPS undergo accelerated aging and have an average life expectancy of just 13.4 years. Patients with HGPS suffer from accelerated vascular disease, and death almost always results from coronary artery disease or stroke. Previous studies have shown a massive loss of smooth muscle cells (SMCs) in the medial layer of large vessels in HGPS patients and animal models, suggesting a possible link between this SMC loss phenotype and the deadly cardiovascular malfunction associated with HGPS. 3D bioprinting techniques are being used to build and characterize a tissue engineered blood vessel wall system using HGPS and normal control iPSC-derived SMCs as disease-in-a-dish models for the discovery of treatments for HGPS. The 3D bioprinted tissue models of blood vessel walls in multi-well plates will be validated biologically and pharmacologically using treatment options previously described. We expect that this 3D vessel system of HGPS will be of great importance for future drug screening and therapeutic development for HGPS and age-related cardiovascular diseases, especially since the toxic protein that causes HGPS is also made in small quantities in normal individuals, and increases as cells approach senescence. This is a collaboration with Dr. Can Kao at University of Maryland, College Park, and Dr. Francis Collins, at NIH/NHGRI.
Bioprinting of an omentum model for modeling ovarian cancer metastasis: Metastasis is the process of spreading of tumor cells to different parts of the body and in most cases it is the pathology that leads to ultimate death in cancer. A 3D assay that recreated the human omentum using cells from ovarian cancer patients undergoing surgery was successfully used to discover compounds that would prevent attachment of tumor cells to the omentum, an early site of metastasis in ovarian cancer. We are currently using tissue bioprinting techniques to increase the relevance on the ovarian cancer metastasis omentum model by introducing additional cell types that are important for the tumor-microenvironment interaction in the omentum metastatic site, including vasculature, adipose cells and leukocytes. Once a native omentum model is recreated, we will study the growth of cancer cells and screen for pharmacological agents that prevent tumor metastasis. This is a collaboration with Dr. Ernst Lengyels group at the Universtiy of Chicago.
组织生物打印计划的活动包括:i)开发生物打印方案,以制造天然的、有功能的人体组织。Ii)印刷组织的验证:利用显微镜、组织学、基因测序、电生理学等方法,开发组织结构和功能的形态和生理生物标记物。三)使用印刷组织筛选用于药物发现的重点化合物文库。四)开发一个共享有效方案的框架,作为研究人员随时可用的资源,以交流关于生物墨水、培养技术、细胞类型、软件工具以及量化和验证打印组织的技术的优化条件的数据。
用于模拟皮肤病的真皮组织生物打印:皮肤是一种复杂的、分层的组织,通过充当进入身体的主动物理屏障并调节水分和其他代谢物的运输来提供对外部环境的保护。生物打印的人类天然皮肤模型可以为皮肤病的病因学提供基本的见解,并阐明皮肤病进展和发现治疗方法的病理生理机制。目前的努力是使用正常的人成纤维细胞和角质形成细胞来打印一致的和可重复的人类自然样真皮和表皮层的生物打印。一旦实现了这一点,我们将引入可用的疾病患者细胞来复制疾病皮肤组织,这些组织将被用作筛查疾病的模型。
湿性老年性黄斑变性(湿性AMD)疾病模型的血视网膜屏障生物打印:在发达国家,视网膜退行性疾病是不可逆性视力丧失的主要原因。在许多情况下,疾病起源于眼后部的动态平衡单位,该单位包含视网膜、视网膜色素上皮(RPE)和脉络膜毛细血管。在像老年性黄斑变性(AMD)这样的疾病中,人们认为RPE功能障碍会导致疾病的发生,随着RPE的退化,光感受器开始死亡,患者开始失明。患者特异性诱导多能干细胞(IPS)来源的RPE提供了对患者遗传学的直接访问,并使识别RPE相关退行性疾病的启动事件成为可能。利用组织生物打印技术结合iPS细胞技术和基础发育生物学,正在开发RPE、神经视网膜和脉络膜毛细血管的三维模型。在整个动态平衡的水平上对疾病过程进行分析,可能会为视网膜退行性疾病的分子机制提供更多的见解,并为发现AMD的新治疗方法提供一个天然的疾病模型。这是与NEI的Kapil Bharti博士团队的合作。
用于模拟早衰症的血管壁模型的生物打印:Hutchinson-Gilford Progeria综合征(HGPS)是一种遗传性疾病,虽然罕见,但对受影响的儿童具有毁灭性的后果。患有HGP的人会加速衰老,平均预期寿命只有13.4岁。HGP患者患有加速的血管疾病,死亡几乎总是由冠状动脉疾病或中风引起。以前的研究表明,HGPS患者和动物模型大血管中层的平滑肌细胞(SMC)大量丢失,提示这种SMC丢失表型与HGPS相关的致命心血管功能障碍之间可能存在联系。3D生物打印技术正被用于构建和表征组织工程血管壁系统,该系统使用HGPS和正常对照IPSC来源的SMC作为发现HGPS治疗方法的盘中病模型。多孔板中血管壁的3D生物打印组织模型将使用前面描述的治疗方案进行生物学和药理学验证。我们预计,这种HGPS的3D血管系统将对未来HGPS和年龄相关心血管疾病的药物筛选和治疗开发具有重要意义,特别是因为导致HGPS的有毒蛋白在正常人中也有少量产生,并随着细胞接近衰老而增加。这是与马里兰大学学院公园的Can Kao博士和NIH/NHGRI的Francis Collins博士的合作。
模拟卵巢癌转移的大网膜模型的生物打印:转移是肿瘤细胞扩散到身体不同部位的过程,在大多数情况下,它是导致癌症最终死亡的病理因素。一项使用卵巢癌手术患者细胞重建人大网膜的3D测试成功地被用来发现可以防止肿瘤细胞附着到大网膜的化合物,大网膜是卵巢癌早期转移的部位。我们目前正在使用组织生物打印技术,通过引入其他类型的细胞,包括血管系统、脂肪细胞和白细胞,来增加与卵巢癌转移大网膜模型的相关性,这些细胞类型对于大网膜转移部位的肿瘤-微环境相互作用至关重要。一旦重建了天然的大网膜模型,我们将研究癌细胞的生长情况,并筛选防止肿瘤转移的药物。这是与芝加哥大学Ernst Lengyels博士团队的合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc Ferrer其他文献
Marc Ferrer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marc Ferrer', 18)}}的其他基金
Identification of novel agonist of the Relaxin family peptide receptor 2 (RXFP2) as potential new therapeutics for testicular maldescent
鉴定松弛素家族肽受体 2 (RXFP2) 的新型激动剂作为睾丸衰退的潜在新疗法
- 批准号:
9205645 - 财政年份:
- 资助金额:
$ 301.07万 - 项目类别:
3D Bioprinted Omentum tissue to model ovarian cancer metastasis
3D 生物打印网膜组织用于模拟卵巢癌转移
- 批准号:
10683668 - 财政年份:
- 资助金额:
$ 301.07万 - 项目类别:
3D Bioprinted retina models for drug screening
用于药物筛选的 3D 生物打印视网膜模型
- 批准号:
10916043 - 财政年份:
- 资助金额:
$ 301.07万 - 项目类别:
3D Bioprinted lung cancer models for drug screening
用于药物筛选的 3D 生物打印肺癌模型
- 批准号:
10907367 - 财政年份:
- 资助金额:
$ 301.07万 - 项目类别:
Targeting Tumor-derived exRNA-Containing microvesicles by high throughput screening
通过高通量筛选靶向肿瘤来源的含有 exRNA 的微泡
- 批准号:
9359917 - 财政年份:
- 资助金额:
$ 301.07万 - 项目类别:
Identification of Small Molecule Effectors that target the Fungal-Specific Kinase Drk1 as Novel Antifungal Drug Leads
鉴定靶向真菌特异性激酶 Drk1 作为新型抗真菌药物先导物的小分子效应器
- 批准号:
9205652 - 财政年份:
- 资助金额:
$ 301.07万 - 项目类别:
PAC1 receptor antagonists as potential treatments for depression and atherosclerosis associated with chronic stress
PAC1 受体拮抗剂作为慢性应激相关抑郁症和动脉粥样硬化的潜在治疗方法
- 批准号:
9360500 - 财政年份:
- 资助金额:
$ 301.07万 - 项目类别:
Small molecule inhibitor screen of MHC II processing pathways using influenza virus A/PR/8/34
使用流感病毒 A/PR/8/34 筛选 MHC II 加工途径的小分子抑制剂
- 批准号:
9205649 - 财政年份:
- 资助金额:
$ 301.07万 - 项目类别:
Identification of Small Molecule Inhibitors of PHF5A for Glioblastoma
胶质母细胞瘤 PHF5A 小分子抑制剂的鉴定
- 批准号:
9360504 - 财政年份:
- 资助金额:
$ 301.07万 - 项目类别:
Identification of small molecule inhibitors of miR-155 expression in Th17 cells
Th17细胞中miR-155表达的小分子抑制剂的鉴定
- 批准号:
9205636 - 财政年份:
- 资助金额:
$ 301.07万 - 项目类别:
相似国自然基金
支链氨基酸代谢紊乱调控“Adipocytes - Macrophages Crosstalk”诱发2型糖尿病脂肪组织功能和结构障碍的作用及机制
- 批准号:81970721
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
New development of cellular regeneration therapy in jaw bone using stem cells derived from adipocytes jaw bone
利用颌骨脂肪细胞来源的干细胞进行颌骨细胞再生治疗的新进展
- 批准号:
23K16058 - 财政年份:2023
- 资助金额:
$ 301.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A novel mechanism of insulin resistance mediated by uric acid metabolism in adipocytes
脂肪细胞尿酸代谢介导胰岛素抵抗的新机制
- 批准号:
23K10969 - 财政年份:2023
- 资助金额:
$ 301.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hypertrophic adipocytes as biophysical mediators of breast cancer progression
肥大脂肪细胞作为乳腺癌进展的生物物理介质
- 批准号:
10751284 - 财政年份:2023
- 资助金额:
$ 301.07万 - 项目类别:
Elucidation of mechanisms for conversion of adipocytes to cancer-associated fibroblasts in osteosarcoma microenvironment
阐明骨肉瘤微环境中脂肪细胞转化为癌症相关成纤维细胞的机制
- 批准号:
23K19518 - 财政年份:2023
- 资助金额:
$ 301.07万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Study on UCP-1 independent metabolic regulation by brown adipocytes
棕色脂肪细胞对UCP-1独立代谢调节的研究
- 批准号:
23K18303 - 财政年份:2023
- 资助金额:
$ 301.07万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of adipocytes for gene therapy that avoids cellular stress due to overexpression of therapeutic proteins
开发用于基因治疗的脂肪细胞,避免因治疗蛋白过度表达而造成的细胞应激
- 批准号:
23H03065 - 财政年份:2023
- 资助金额:
$ 301.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Functional analysis of bitter taste receptors in adipocytes and hepatocytes
脂肪细胞和肝细胞中苦味受体的功能分析
- 批准号:
23K05107 - 财政年份:2023
- 资助金额:
$ 301.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NKA/CD36 signaling in adipocytes promotes oxidative stress and drives chronic inflammation in atherosclerosis
脂肪细胞中的 NKA/CD36 信号传导促进氧化应激并驱动动脉粥样硬化的慢性炎症
- 批准号:
10655793 - 财政年份:2023
- 资助金额:
$ 301.07万 - 项目类别:
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 301.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NKT cell activation depend on lipid accumulation in adipocytes
NKT 细胞的激活取决于脂肪细胞中的脂质积累
- 批准号:
22K08679 - 财政年份:2022
- 资助金额:
$ 301.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




