High-speed volumetric imaging of neural activity throughout the living brain
整个活体大脑神经活动的高速体积成像
基本信息
- 批准号:9404832
- 负责人:
- 金额:$ 89.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAdoptedAdoptionAlgorithmsAnimal ModelAnimalsAxonBiologyBrainBrain imagingCalciumCell NucleusComplexComputer softwareCorpus striatum structureDataData AnalysesData ScienceDendritesDendritic SpinesDimensionsEnsureEventFerretsFluorescenceFluorescence MicroscopyGoalsHeadHypothalamic structureImageImaging technologyIndividualLabelLaboratoriesLateralMeasuresMethodsMicroscopeMonitorMorphologic artifactsMotionMotorMusNeurobiologyNeuronsNeurosciences ResearchOpticsOutputPhotonsPopulationResistanceResolutionScanningSignal TransductionSpeedStructureSynapsesSystemTechniquesTechnologyThickThree-Dimensional ImagingTimeTissue imagingWorkZebrafishadaptive opticsbasebrain tissuebrain volumeexperiencefluorescence microscopeflyfunctional plasticityimaging modalityin vivolight scatteringmicroendoscopynervous system disorderneural circuitnovel strategiesoperationpreventrelating to nervous systemsensory inputspatiotemporaltemporal measurementtooltwo-photon
项目摘要
To understand how the brain computes, we need to understand how individual neurons in a circuit integrate
their numerous inputs into output signals, as well as how they work together to encode a sensory input or
execute a motor command in a behaving animal. Circuits and neurons are three-dimensional (3D) and can
extend over hundreds or thousands of microns. Therefore, understanding their operations requires
monitoring their activity at both synaptic and cellular resolution in 3D at image rates that capture all activity
events. Behaving animals present a host of challenges to this goal. Existing 3D imaging technologies suffer
from insufficient volume imaging speed, brain-motion-induced image artifacts, as well as complex
hardware and software implementation. These limitations have prevented their adoption by biology
laboratories and remain a technical barrier for neuroscience research. Successful completion of our proposal
will overcome these limitations and profoundly impact neuroscience research. We recently developed a
Bessel focus scanning technology (BEST) that is easily integrated into existing two-photon microscopes,
resistant to motion artifacts, and have already achieved 30-Hz, synapse-resolving volumetric imaging of
sparsely labelled neuronal populations in a wide variety of model organisms. In this proposal, combining
the expertise of microscopists, biologists, and data scientists, we propose to further optimize BEST to
enable high-speed, high-throughput, and high-resolution volumetric activity recording of both sparsely and
densely labelled circuits throughout the living brain. We aim to record whole-brain activity in the fly at >10
Hz and through-cortex volume imaging in the mouse at ~2Hz. By combining BEST with microendoscopy,
we aim to achieve synaptic-resolution volumetric microendoscopic imaging at 30 Hz and use it to study
structural and functional plasticity in deeply buried nuclei of the mouse brain. By correcting brain-induced
optical aberrations, adaptive optics will enable BEST to maintain synapse resolution throughout the entire
mouse cortex. Easily adoptable, BEST has already been integrated into multiple two-photon fluorescence
microscopes in laboratories worldwide. With a continuously expanding user base, the proposed
optimization project will immediately benefit a wide range of laboratories, allowing them to study
volumetric neural activity at unprecedented high spatiotemporal resolution throughout the living brain.
要了解大脑如何计算,我们需要了解电路中的各个神经元如何集成
它们的大量输入转化为输出信号,以及它们如何协同工作来编码感官输入或
在行为动物中执行运动命令。电路和神经元是三维 (3D) 的,可以
延伸超过数百或数千微米。因此,了解他们的运作需要
以捕获所有活动的图像速率以 3D 方式监控突触和细胞分辨率的活动
事件。行为动物对这一目标提出了许多挑战。现有 3D 成像技术受到影响
由于体积成像速度不足、大脑运动引起的图像伪影以及复杂的
硬件和软件实现。这些限制阻碍了它们被生物学采用
实验室,仍然是神经科学研究的技术障碍。成功完成我们的提案
将克服这些限制并深刻影响神经科学研究。我们最近开发了一个
贝塞尔聚焦扫描技术(BEST)可轻松集成到现有的双光子显微镜中,
抗运动伪影,并且已经实现了 30 Hz、突触解析的体积成像
各种模型生物中稀疏标记的神经元群体。在该提案中,结合
结合显微镜学家、生物学家和数据科学家的专业知识,我们建议进一步优化 BEST
实现稀疏和高分辨率的体积活动记录
整个活体大脑中密集标记的电路。我们的目标是在 >10 时记录果蝇的全脑活动
Hz 和小鼠中约 2Hz 的穿过皮层体积成像。通过将 BEST 与显微内窥镜相结合,
我们的目标是在 30 Hz 下实现突触分辨率体积显微内窥镜成像,并用它来研究
小鼠大脑深埋核的结构和功能可塑性。通过纠正大脑诱发的
光学像差,自适应光学将使 BEST 在整个过程中保持突触分辨率
小鼠皮质。易于采用,BEST 已集成到多个双光子荧光中
世界各地实验室的显微镜。随着用户群的不断扩大,建议
优化项目将立即使广泛的实验室受益,使他们能够进行研究
在整个活体大脑中以前所未有的高时空分辨率进行体积神经活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NA Ji其他文献
NA Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NA Ji', 18)}}的其他基金
Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
- 批准号:
10717610 - 财政年份:2023
- 资助金额:
$ 89.32万 - 项目类别:
Adaptive optical microscopy for high-accuracy recording of neural activity in vivo
用于高精度记录体内神经活动的自适应光学显微镜
- 批准号:
10543177 - 财政年份:2021
- 资助金额:
$ 89.32万 - 项目类别:
Adaptive optical microscopy for high-accuracy recording of neural activity in vivo
用于高精度记录体内神经活动的自适应光学显微镜
- 批准号:
10048013 - 财政年份:2021
- 资助金额:
$ 89.32万 - 项目类别:
Adaptive optical microscopy for high-accuracy recording of neural activity in vivo
用于高精度记录体内神经活动的自适应光学显微镜
- 批准号:
10324548 - 财政年份:2021
- 资助金额:
$ 89.32万 - 项目类别:
Cell-type specific characterization of neuronal activity throughout V1
V1 期间神经元活动的细胞类型特异性特征
- 批准号:
10231008 - 财政年份:2018
- 资助金额:
$ 89.32万 - 项目类别:
Cell-type specific characterization of neuronal activity throughout V1
V1 期间神经元活动的细胞类型特异性特征
- 批准号:
10438695 - 财政年份:2018
- 资助金额:
$ 89.32万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 89.32万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 89.32万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 89.32万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 89.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 89.32万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 89.32万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 89.32万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 89.32万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 89.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 89.32万 - 项目类别:
Research Fellowships














{{item.name}}会员




