Free Surfer Development, Maintenance, and Hardening
免费冲浪者开发、维护和强化
基本信息
- 批准号:9562259
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:Advanced DevelopmentAlgorithmsAlzheimer&aposs DiseaseAnatomyAtlasesBiological MarkersBrainBrain imagingClinicalCodeCommunitiesComputer softwareDataData AnalysesData SetDatabasesDetectionDevelopmentDiagnosisDiagnosticDiffusion Magnetic Resonance ImagingDocumentationElectroencephalographyElectronic MailEnvironmentEvaluationEventFramingham Heart StudyFunctional Magnetic Resonance ImagingFundingFutureGrantGrowthHeartHourHumanImageIndustry StandardInterventionLabelLeadLocationMagnetic Resonance ImagingMaintenanceManualsManuscriptsMemoryMethodsModalityModernizationMotivationMultivariate AnalysisOperating RoomsOpticsPerformancePharmacologic SubstancePositron-Emission TomographyProtocols documentationPublicationsResearchResearch InfrastructureResearch PersonnelRunningSoftware EngineeringSpeedStreamStrokeSurfaceSurvival AnalysisTestingTimeUnited States National Institutes of HealthWorkbaseconnectomedata acquisitiondesignhuman imaginginnovationmultimodalityneuroimagingprogramsrepositorytool
项目摘要
Abstract:
FreeSurfer Development, Maintenance, and Hardening
Imaging of the human brain has seen explosive growth in the last decade mainly through the various
modalities of MRI. The massive amount of data requires automatic and robust tools for analysis.
FreeSurfer (FS, surfer.nmr.mgh.harvard.edu) is one of the preeminent tools used for neuroimage analysis.
FS has more than 20,000 downloads, and the core FS manuscripts have been cited more than 3000 times.
FS is part of the analysis core for many NIH-funded large-scale data acquisition projects such as the
Human Connectome Project (HCP), Alzheimer's Disease Neuroimaging Initiative (ADNI), and
Frammingham Heart Study (FHS). One third of all ADNI-based publications cite FS. Simply put, much of
the innovative research done in neuroimaging would not be possible without FS.
Started in 1998, FS is best known for providing detailed and automated anatomical analysis of T1-
weighted MRI images, especially for the cortical surface. However, FS anatomical analysis provides an
ideal substrate for all modes of brain imaging including functional MRI, diffusion MRI, PET, optical/NIRS,
EEG/MEG. FS provides tools to perform these analyses as well as software to integrate with other analysis
tools (eg, SPM, FSL, AFNI). FS has been used for presurgical planning and even in the operating room.
A software package with a scientific breadth and user based the size of FS’s requires a significant
amount of effort just to maintain it. For example, the FS email list receives approximately 3000 posts a
year. FS must be continuously and rigorously tested because it is such an integral part of the neuroimaging
infrastructure. Users are constantly requesting new functionality and better performance. This proposal will
be used to develop, maintain, and harden FS. Specifically, we will make FS more robust by incorporating
multiple modalities instead of just T1. We will replace the whole-brain segmentation with an unsupervised
method that simultaneously optimizes bias field correction in a multimodal setting. We will implements
multivariate analysis tools to assist in the interpretation of data. We will also harden and optimize the FS
code base. Finally, we will include tools to assist the user to easily find where the FS analysis fails.
摘要:
FreeSurfer开发、维护和强化
在过去的十年里,人类大脑的成像技术主要通过各种方法得到了爆炸性的发展。
MRI的模式。大量的数据需要自动和强大的分析工具。
FreeSurfer(FS,surfer.nmr.mgh.harvard.edu)是用于神经图像分析的杰出工具之一。
FS下载量超过20,000次,核心FS手稿被引用超过3000次。
FS是许多NIH资助的大型数据采集项目的分析核心的一部分,
人类连接组计划(HCP),阿尔茨海默病神经影像学倡议(ADNI),和
心脏研究(FHS)。所有基于ADNI的出版物中有三分之一引用FS。简单地说,
如果没有FS,神经成像领域的创新研究就不可能实现。
从1998年开始,FS以提供T1的详细和自动解剖分析而闻名,
加权MRI图像,尤其是皮质表面。然而,FS解剖分析提供了一个
适用于所有脑成像模式的理想基质,包括功能性MRI、扩散MRI、PET、光学/NIRS,
脑电图/脑磁图。FS提供了执行这些分析的工具以及与其他分析集成的软件
工具(例如SPM、FSL、AFNI)。FS已被用于术前计划,甚至在手术室。
一个具有科学广度和基于用户的FS大小的软件包需要大量的
例如,FS电子邮件列表收到大约3000个帖子,
年FS是神经影像学中不可或缺的一部分,因此必须进行持续和严格的测试
基础设施演进用户不断要求新的功能和更好的性能。这项建议会
用于开发、维护和强化FS。具体来说,我们会把
而不仅仅是T1。我们将用一个无监督的
一种同时优化多模式设置中的偏置场校正的方法。我们将实施
多变量分析工具,以协助解释数据。我们亦会加强和优化财政司司长的架构,
代码库最后,我们将包括一些工具来帮助用户轻松找到FS分析失败的地方。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Fischl其他文献
Bruce Fischl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Fischl', 18)}}的其他基金
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
BRAIN CONNECTS: Mapping Connectivity of the Human Brainstem in a Nuclear Coordinate System
大脑连接:在核坐标系中绘制人类脑干的连接性
- 批准号:
10664289 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Deep Learning for Detecting the Early Anatomical Effects of Alzheimer's Disease
深度学习检测阿尔茨海默病的早期解剖学影响
- 批准号:
10658045 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Segmenting Brain Structures for Neurological Disorders
分割神经系统疾病的大脑结构
- 批准号:
10295766 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Research Grant