Mechanisms of viral RNA maturation by co-opting cellular exonucleases
通过选择细胞核酸外切酶使病毒 RNA 成熟的机制
基本信息
- 批准号:9372352
- 负责人:
- 金额:$ 38.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-26 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgricultureBasic ScienceBinding ProteinsBiochemicalBiochemistryBiologicalBiological AssayBiophysicsCellsCharacteristicsComputational BiologyCoupledCulicidaeDarknessDatabasesDianthovirusesDimensionsDiseaseDistantElementsEnvironmentEnzymesExonucleaseExoribonucleasesFlavivirusGenomeGoalsHealthHumanIn VitroInfectionKnowledgeLocationMethodsMolecularNatureParasitesPathogenicityPhylogenetic AnalysisPhylogenyPrecursor RNAProcessProteinsRNARNA DecayRNA FoldingRNA PrecursorsRNA SequencesRecruitment ActivityResearchResistanceRift Valley fever virusRoleStructureTestingTherapeutic InterventionUntranslated RNAValidationViralViral GenomeVirusVirus DiseasesX-Ray Crystallographycombatcomputerized toolsfollow-upgenomic RNAinnovationinsightnew technologynovelnovel therapeuticspoly A specific exoribonucleaseprotein foldingprototypestructural biologythree dimensional structuretoolviral RNA
项目摘要
Project Summary
As obligate cellular parasites, viruses employ a variety of strategies to co-opt the host cell’s machinery, using it to generate
the molecules needed for successful infection. Many of these strategies involve viral RNA that forms specific structures
able to interact with and manipulate cellular components. An important example is found in the mosquito-borne flaviviruses,
which co-opt a cellular exoribonuclease and use it to generate pathogenically-important non-coding RNAs. Specifically, the
5’3’ exoribonuclease Xrn1 is recruited to the genomic RNA, processively degrades it, but then halts at specific locations
in the genome. This programmed “exoribonuclease resistance” depends on specific three-dimensional RNA structures that
are embedded in the flaviviral RNA. The exoribonuclease-resistant RNAs (xrRNAs) of the mosquito-borne flaviviruses are
the prototypes of this process and we have learned much by studying them. However, it is now clear that the strategy of co-
opting and exploiting cellular exoribonucleases is not limited to these viruses, but may be widespread. Evidence suggests
that diverse viruses use different types of exoribonuclease-resistant RNA elements as a means to process long precursor
RNAs into shorter, biologically active RNAs. However, despite the emerging importance of these novel exoribonuclease-
resistant RNA structures and the mechanisms they perform, we know almost nothing about them. Among the burning
fundamental questions: Do all of these putative Xrn1-resistant elements use a similar mechanism? Despite no obvious
sequence similarity, are they all folded RNAs? Are they all RNA structure-driven, or do some require bound proteins? Are
the folds of these different RNAs similar, or has nature evolved many ways to achieve the goal of blocking progression of
an exoribonuclease? Our understanding of these processes in diverse viruses is hampered by a lack of basic information
about various xrRNA structures. The focus of this proposal is therefore to drive the field forward by studying several
unexplored examples of xrRNAs. We aim to gain insight into the breadth and diversity of the exoribonuclease resistance
phenomenon, to discover fundamental principles of exoribonuclease resistance that may be applicable across the larger viral
world, and to develop new technology to enable us to find or predict exoribonuclease structures in other viruses and contexts.
We propose three aims: (1) Determine the essential sequences, structural determinants, and mechanistic characteristics of
exoribonuclease resistance by a diverse set of flaviviral RNAs. (2) Define sequences and structures of RNAs from the
Dianthoviruses and Rift Valley Fever Virus that confer exoribonuclease resistance, and (3) Develop a synthetic expanded
phylogeny of Xrn1-resistant RNAs and use this to computationally search for unidentified resistant RNAs in other viruses.
Our approach is to combine biochemical assays that are unique to our lab and that comprise a comprehensive set of tools
for exploring these RNAs, structural biology to include x-ray crystallography, and in vitro selections coupled with
computational tools. The research described here will contribute significant basic knowledge regarding an important
molecular process of broad applicability to viral disease, a necessary step between the discovery of a mechanism and the
targeting of it for therapeutic intervention.
项目摘要
作为专性细胞寄生虫,病毒采用多种策略来利用宿主细胞的机制,利用它来产生
成功感染所需的分子这些策略中的许多涉及形成特定结构的病毒RNA
能够与细胞成分相互作用并操纵细胞成分。一个重要的例子是蚊子传播的黄病毒,
其选择细胞核糖核酸外切酶并使用其产生致病重要的非编码RNA。具体而言是
5 '端3'核糖核酸外切酶Xrn1被募集到基因组RNA中,并被原核生物降解,但随后在特定位置停止
在基因组中。这种程序化的“核糖核酸外切酶抗性”依赖于特定的三维RNA结构,
嵌入在黄病毒RNA中蚊媒黄病毒的核糖核酸外切酶抗性RNA(xrRNA)是
这个过程的原型,我们通过研究它们学到了很多东西。然而,现在很明显,联合国的战略,
选择和利用细胞核糖核酸外切酶并不限于这些病毒,而是可能广泛存在。证据表明
不同的病毒使用不同类型的抗核糖核酸外切酶的RNA元件作为加工长前体的手段,
RNA转化为更短的具有生物活性的RNA。然而,尽管这些新的核糖核酸外切酶的重要性正在显现,
尽管我们对耐药RNA的结构和它们的作用机制几乎一无所知。在燃烧的
基本问题:所有这些假定的Xrn1抗性元件都使用类似的机制吗?尽管没有明显的
序列相似性,它们都是折叠的RNA吗?它们都是由RNA结构驱动的吗?还是有些需要结合蛋白质?是
这些不同RNA的折叠相似,或者自然界进化出多种方式来实现阻止肿瘤进展的目标
核糖核酸外切酶由于缺乏基本信息,我们对不同病毒中这些过程的理解受到阻碍
关于各种xrRNA结构。因此,本提案的重点是通过研究几个
未被探索的xrRNA的例子。我们的目标是深入了解核糖核酸外切酶抗性的广度和多样性,
现象,发现核糖核酸外切酶抗性的基本原则,可能适用于更大的病毒
世界,并开发新技术,使我们能够找到或预测其他病毒和环境中的核糖核酸外切酶结构。
我们提出了三个目标:(1)确定的基本序列,结构决定因素,和机械特性,
多种黄病毒RNA对核糖核酸外切酶的耐药性。(2)定义RNA的序列和结构,
香石竹病毒和裂谷热病毒,赋予核糖核酸外切酶抗性,和(3)开发一种合成的扩增的
Xrn1抗性RNA的遗传学,并使用它来计算搜索其他病毒中未识别的抗性RNA。
我们的方法是结合联合收割机生化分析,这是我们实验室独有的,包括一套全面的工具
为了探索这些RNA,结构生物学,包括X射线晶体学,以及体外选择,
计算工具。这里描述的研究将有助于重要的基础知识,
广泛适用于病毒性疾病的分子过程,是发现机制和治疗之间的必要步骤。
将其作为治疗干预的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey S Kieft其他文献
Jeffrey S Kieft的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey S Kieft', 18)}}的其他基金
Mechanisms of viral RNA maturation by co-opting cellular exonucleases
通过选择细胞核酸外切酶使病毒 RNA 成熟的机制
- 批准号:
10814079 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
Mechanisms of viral RNA maturation by co-opting cellular exonucleases
通过选择细胞核酸外切酶使病毒 RNA 成熟的机制
- 批准号:
10463469 - 财政年份:2022
- 资助金额:
$ 38.23万 - 项目类别:
The National Center for In-situ Tomographic Ultramicroscopy (NCITU)
国家原位断层超显微术中心 (NCITU)
- 批准号:
10474586 - 财政年份:2020
- 资助金额:
$ 38.23万 - 项目类别:
The National Center for In-situ Tomographic Ultramicroscopy (NCITU)
国家原位断层超显微术中心 (NCITU)
- 批准号:
10818768 - 财政年份:2020
- 资助金额:
$ 38.23万 - 项目类别:
NCCAT: National Center for CryoEM Access and Training
NCCAT:国家冷冻电镜访问和培训中心
- 批准号:
10615040 - 财政年份:2018
- 资助金额:
$ 38.23万 - 项目类别:
NCCAT: National Center for CryoEM Access and Training
NCCAT:国家冷冻电镜访问和培训中心
- 批准号:
10394723 - 财政年份:2018
- 资助金额:
$ 38.23万 - 项目类别:
NCCAT: National Center for CryoEM Access and Training--Screening Supplement
NCCAT:国家冷冻电镜访问和培训中心 - 筛选补充
- 批准号:
10830733 - 财政年份:2018
- 资助金额:
$ 38.23万 - 项目类别:
Mechanisms of viral RNA maturation by co-opting cellular exonucleases
通过选择细胞核酸外切酶使病毒 RNA 成熟的机制
- 批准号:
10153681 - 财政年份:2017
- 资助金额:
$ 38.23万 - 项目类别:
Structure, function, and dynamics of viral RNAs and RNA-containing complexes
病毒 RNA 和含 RNA 复合物的结构、功能和动力学
- 批准号:
9753272 - 财政年份:2016
- 资助金额:
$ 38.23万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
Studentship