BioLuminescent OptoGenetics (BL-OG): A Novel and Versatile Strategy for Neuromodulation

生物发光光遗传学 (BL-OG):一种新颖且多功能的神经调节策略

基本信息

  • 批准号:
    9492464
  • 负责人:
  • 金额:
    $ 1.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-30 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

New tools to selectively regulate neurons have revolutionized causal experimentation. Optogenetics provides an array of elements for specific biophysical control, while designer chemogenetic receptors provide a minimally invasive method to control circuits in vivo by peripheral injection. We have developed a strategy for selective regulation of activity in specific cells that integrates opto- and chemo-genetic approaches, and thus allows manipulation of neuronal activity over a range of spatial and temporal scales in the same experimental animal. Light-sensing molecules (opsins) are activated by biologically produced light through luciferases upon peripheral injection of a small molecule, which crosses the blood-brain barrier. Such BioLuminescence-driven OptoGenetics (‘BL-OG’) is a minimally invasive method like chemogenetics, but one that leverages the full array of bioluminescent and optogenetic options. Importantly, BL-OG allows conventional fiber optic activation while at the same time providing chemogenetic access to the same sensors. This opens, in principle, the entire optogenetic toolbox for complementation by a chemogenetic dimension. Further, because different forms of luciferases use non-cross reactive luciferins, multiple distinct effects can be independently and conjointly controlled in the same animal. We demonstrated proof of concept for this technology by using fusion proteins that directly link Gaussia luciferase (GLuc) to opsins, creating luminescent opsins (luminopsin, LMO). Here, we describe our next steps to increase the benefit of this technology for the field. We will expand the range of BL-OG options, increase their potency, and systematically quantify BL-OG impact in vitro and in vivo. In Aim I, we will generate new luciferases with increased light emission and luciferase/luciferin pairs with non- overlapping substrates to allow multiplexing. In Aim II, we will develop an extended toolkit of luciferase-opsin combinations and test their efficacy in vitro. In Aim III, we will validate and quantify the efficacy of bioluminescence activation of neural circuits in vivo by and directly compare stimulation of LMOs versus fiber optics versus DREADDs. Reflecting the basic science and clinical importance of BL-OG and the expertise of the investigators, we will use defined networks in neocortex and thalamus targeted with viral vectors expressing activating and silencing LMOs and DREADDs. The overall outcome of our work will be the optimization and validation of a novel, highly flexible tool set for bimodal optogenetic and chemogenetic interrogation of neuronal circuits in living animals. The proposed work will give the neuroscience community new molecules and comparative data to aid in making an informed decision when choosing among the various tools that may meet their specific experimental needs.
选择性调节神经元的新工具彻底改变了因果实验。光遗传学提供了 一系列用于特定生物物理控制的元件,而设计的化学发生受体提供了 通过外周注射控制体内电路的微创方法。我们已经制定了一项战略, 对特定细胞活动的选择性调节,结合了光和化学遗传方法,因此 允许在同一实验中在一系列空间和时间尺度上操纵神经元活动 动物。感光分子(视蛋白)是由生物产生的光通过荧光素酶激活的。 外周注射一种小分子,它能穿过血脑屏障。这样的生物发光驱动 光遗传学是一种像化学遗传学一样的微创方法,但它充分利用了 一系列生物发光和光遗传选项。重要的是,BL-OG允许传统的光纤激活 同时提供对相同传感器的化学生成途径。原则上,这打开了整个 光遗传工具箱,用于通过化学发生维度进行互补。此外,因为不同形式的 荧光素酶使用非交叉反应的荧光素,多个不同的作用可以独立和联合 在同一只动物体内控制。我们通过使用融合蛋白证明了这项技术的概念。 它直接将赤子荧光素酶(GLuc)与视黄素联系起来,产生发光视蛋白(LMO)。 在这里,我们描述下一步增加这项技术在该领域的好处。我们将扩大 BLOG的选择范围,增加它们的效力,并系统地量化BLOG在体外和体内的影响。 在目标I中,我们将产生新的发光增加的荧光素酶和荧光素酶/荧光素对与非 重叠衬底以实现多路复用。在AIM II中,我们将开发一套扩展的荧光素酶视蛋白工具包 并在体外测试它们的疗效。在目标III中,我们将验证和量化 刺激LMOS和纤维对体内神经回路的生物发光激活及其直接比较 光学与DREADS。反映了BL-OG的基础科学和临床重要性,以及 研究人员,我们将使用病毒载体靶向的新皮质和丘脑中的特定网络 表达、激活和沉默LMO和DREADD。我们工作的总体结果将是 一种新的、高度灵活的双模式光遗传和化学遗传工具集的优化和验证 对活体动物的神经回路的询问。这项拟议的工作将给神经科学界 新的分子和比较数据,帮助在各种选择中做出明智的决定 可满足其特定实验需求的工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

UTE H HOCHGESCHWENDER其他文献

UTE H HOCHGESCHWENDER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('UTE H HOCHGESCHWENDER', 18)}}的其他基金

Selective Control of Synaptically-Connected Circuit Elements by Interluminescence - Diversity Supplement SILVAGNOLI
通过间发光选择性控制突触连接的电路元件 - Diversity Supplement SILVAGNOLI
  • 批准号:
    10731169
  • 财政年份:
    2023
  • 资助金额:
    $ 1.13万
  • 项目类别:
Targeted Circuit Manipulation for Ameliorating Huntington's Disease Pathogenesis
改善亨廷顿病发病机制的靶向电路操作
  • 批准号:
    10841909
  • 财政年份:
    2023
  • 资助金额:
    $ 1.13万
  • 项目类别:
Targeted Circuit Manipulation for Ameliorating Huntington's Disease Pathogenesis
改善亨廷顿病发病机制的靶向电路操作
  • 批准号:
    10646867
  • 财政年份:
    2023
  • 资助金额:
    $ 1.13万
  • 项目类别:
Selective Control of Synaptically-Connected Circuit Elements by Interluminescence
通过间发光选择性控制突触连接的电路元件
  • 批准号:
    10165226
  • 财政年份:
    2021
  • 资助金额:
    $ 1.13万
  • 项目类别:
Selective Control of Synaptically-Connected Circuit Elements by Interluminescence - Diversity Supplement: E. CRESPO
通过间发光选择性控制突触连接的电路元件 - 多样性补充:E. CRESPO
  • 批准号:
    10406018
  • 财政年份:
    2021
  • 资助金额:
    $ 1.13万
  • 项目类别:
BioLuminescent OptoGenetics (BL-OG): A Novel and Versatile Strategy for Neuromodulation
生物发光光遗传学 (BL-OG):一种新颖且多功能的神经调节策略
  • 批准号:
    9356587
  • 财政年份:
    2016
  • 资助金额:
    $ 1.13万
  • 项目类别:
BioLuminescent OptoGenetics (BL-OG): A Novel and Versatile Strategy for Neuromodulation
生物发光光遗传学 (BL-OG):一种新颖且多功能的神经调节策略
  • 批准号:
    9492447
  • 财政年份:
    2016
  • 资助金额:
    $ 1.13万
  • 项目类别:
BioLuminescent OptoGenetics (BL-OG): A Novel and Versatile Strategy for Neuromodulation
生物发光光遗传学 (BL-OG):一种新颖且多功能的神经调节策略
  • 批准号:
    9231901
  • 财政年份:
    2016
  • 资助金额:
    $ 1.13万
  • 项目类别:
Employing subcellular calcium to control membrane voltage
利用亚细胞钙来控制膜电压
  • 批准号:
    9136155
  • 财政年份:
    2015
  • 资助金额:
    $ 1.13万
  • 项目类别:
Genetically Encoded Light-Production and Light-Sensing for Neuronal Manipulation
用于神经元操纵的基因编码光产生和光传感
  • 批准号:
    8971048
  • 财政年份:
    2014
  • 资助金额:
    $ 1.13万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 1.13万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 1.13万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 1.13万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 1.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 1.13万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 1.13万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 1.13万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 1.13万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 1.13万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 1.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了