BioLuminescent OptoGenetics (BL-OG): A Novel and Versatile Strategy for Neuromodulation
生物发光光遗传学 (BL-OG):一种新颖且多功能的神经调节策略
基本信息
- 批准号:9231901
- 负责人:
- 金额:$ 76.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAction PotentialsAddressAnimalsAnionsAreaAutistic DisorderAutomobile DrivingBRAIN initiativeBasic ScienceBehaviorBehavioralBenchmarkingBiochemicalBioluminescenceBlood - brain barrier anatomyBrainCellsChemicalsChimeric ProteinsClinicalCommunitiesComplexDataDevelopmentDimensionsElectromagneticsElementsEpilepsyFiber OpticsForms ControlsGoalsHumanIn VitroIndiumInjection of therapeutic agentLifeLightLinkLuciferasesMemory LossMental DepressionMental disordersMethodsMissionMutagenesisNeocortexNeuronsNeurosciencesOpsinOutcomeOutputPeripheralPopulationProductionProteinsProtocols documentationProton PumpPublic HealthReagentRegulationResearchResearch PersonnelRouteSchizophreniaSiteTechnologyTestingThalamic structureTherapeuticTimeUnited States National Institutes of HealthValidationVariantViral VectorWorkaddictionbrain cellcomparativedesigndesigner receptors exclusively activated by designer drugsflexibilitygenetic approachin vivolight emissionluciferinmeetingsminimally invasivemulti-electrode arraysmutantnervous system disorderneural circuitneuronal circuitryneuroregulationnew technologynoveloptogeneticsreceptorrelating to nervous systemresearch studyresponsesensorsmall moleculetool
项目摘要
New tools to selectively regulate neurons have revolutionized causal experimentation. Optogenetics provides
an array of elements for specific biophysical control, while designer chemogenetic receptors provide a
minimally invasive method to control circuits in vivo by peripheral injection. We have developed a strategy for
selective regulation of activity in specific cells that integrates opto- and chemo-genetic approaches, and thus
allows manipulation of neuronal activity over a range of spatial and temporal scales in the same experimental
animal. Light-sensing molecules (opsins) are activated by biologically produced light through luciferases upon
peripheral injection of a small molecule, which crosses the blood-brain barrier. Such BioLuminescence-driven
OptoGenetics (‘BL-OG’) is a minimally invasive method like chemogenetics, but one that leverages the full
array of bioluminescent and optogenetic options. Importantly, BL-OG allows conventional fiber optic activation
while at the same time providing chemogenetic access to the same sensors. This opens, in principle, the entire
optogenetic toolbox for complementation by a chemogenetic dimension. Further, because different forms of
luciferases use non-cross reactive luciferins, multiple distinct effects can be independently and conjointly
controlled in the same animal. We demonstrated proof of concept for this technology by using fusion proteins
that directly link Gaussia luciferase (GLuc) to opsins, creating luminescent opsins (luminopsin, LMO).
Here, we describe our next steps to increase the benefit of this technology for the field. We will expand the
range of BL-OG options, increase their potency, and systematically quantify BL-OG impact in vitro and in vivo.
In Aim I, we will generate new luciferases with increased light emission and luciferase/luciferin pairs with non-
overlapping substrates to allow multiplexing. In Aim II, we will develop an extended toolkit of luciferase-opsin
combinations and test their efficacy in vitro. In Aim III, we will validate and quantify the efficacy of
bioluminescence activation of neural circuits in vivo by and directly compare stimulation of LMOs versus fiber
optics versus DREADDs. Reflecting the basic science and clinical importance of BL-OG and the expertise of
the investigators, we will use defined networks in neocortex and thalamus targeted with viral vectors
expressing activating and silencing LMOs and DREADDs. The overall outcome of our work will be the
optimization and validation of a novel, highly flexible tool set for bimodal optogenetic and chemogenetic
interrogation of neuronal circuits in living animals. The proposed work will give the neuroscience community
new molecules and comparative data to aid in making an informed decision when choosing among the various
tools that may meet their specific experimental needs.
选择性调节神经元的新工具彻底改变了因果实验。光遗传学提供了
一系列用于特定生物物理控制的元件,而设计者化学遗传受体提供了一种
通过外周注射控制体内回路的微创方法。我们制定了一项战略,
选择性调节特定细胞的活性,整合光遗传和化学遗传方法,
允许在相同的实验中在一定范围的空间和时间尺度上操纵神经元活动
动物光敏感分子(视蛋白)被生物产生的光激活,
外周注射小分子,其穿过血脑屏障。这种生物发光驱动的
OptoGenetics('BL-OG')是一种像化学遗传学一样的微创方法,但它充分利用了
一系列生物发光和光遗传学的选择。重要的是,BL-OG允许传统的光纤激活
同时提供对相同传感器的化学发生通路。这在原则上打开了整个
用于通过化学遗传学维度互补的光遗传学工具箱。此外,由于不同形式的
酶使用非交叉反应性的酶,多种不同的作用可以独立地或联合地进行。
控制在同一个动物身上。我们通过使用融合蛋白证明了这项技术的概念
直接将高斯荧光素酶(GLuc)连接到视蛋白,产生发光视蛋白(发光蛋白,LMO)。
在这里,我们描述了我们的下一步,以增加该领域的这项技术的好处。我们将扩大
一系列BL-OG选项,增加其效力,并系统地量化BL-OG在体外和体内的影响。
在目标I中,我们将产生具有增加的光发射和与非荧光素酶成对的荧光素酶/荧光素酶的新的荧光素酶。
重叠衬底以允许多路复用。在目标II中,我们将开发一个扩展的工具包,
组合并在体外测试其功效。在目标III中,我们将验证和量化
通过直接比较LMO与纤维的刺激来生物发光激活体内神经回路
光学与DREADDs的对比反映了BL-OG的基础科学和临床重要性以及
研究人员说,我们将使用病毒载体靶向的新皮层和丘脑中的定义网络,
表达激活和沉默LMO和DREADD。我们工作的总体成果将是
用于双峰光遗传学和化学遗传学的新型高度灵活的工具集的优化和验证
活体动物神经回路的研究。这项工作将给神经科学界
新的分子和比较数据,以帮助在各种选择中做出明智的决定
可以满足其特定实验需求的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UTE H HOCHGESCHWENDER其他文献
UTE H HOCHGESCHWENDER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UTE H HOCHGESCHWENDER', 18)}}的其他基金
Selective Control of Synaptically-Connected Circuit Elements by Interluminescence - Diversity Supplement SILVAGNOLI
通过间发光选择性控制突触连接的电路元件 - Diversity Supplement SILVAGNOLI
- 批准号:
10731169 - 财政年份:2023
- 资助金额:
$ 76.18万 - 项目类别:
Targeted Circuit Manipulation for Ameliorating Huntington's Disease Pathogenesis
改善亨廷顿病发病机制的靶向电路操作
- 批准号:
10841909 - 财政年份:2023
- 资助金额:
$ 76.18万 - 项目类别:
Targeted Circuit Manipulation for Ameliorating Huntington's Disease Pathogenesis
改善亨廷顿病发病机制的靶向电路操作
- 批准号:
10646867 - 财政年份:2023
- 资助金额:
$ 76.18万 - 项目类别:
Selective Control of Synaptically-Connected Circuit Elements by Interluminescence
通过间发光选择性控制突触连接的电路元件
- 批准号:
10165226 - 财政年份:2021
- 资助金额:
$ 76.18万 - 项目类别:
Selective Control of Synaptically-Connected Circuit Elements by Interluminescence - Diversity Supplement: E. CRESPO
通过间发光选择性控制突触连接的电路元件 - 多样性补充:E. CRESPO
- 批准号:
10406018 - 财政年份:2021
- 资助金额:
$ 76.18万 - 项目类别:
BioLuminescent OptoGenetics (BL-OG): A Novel and Versatile Strategy for Neuromodulation
生物发光光遗传学 (BL-OG):一种新颖且多功能的神经调节策略
- 批准号:
9356587 - 财政年份:2016
- 资助金额:
$ 76.18万 - 项目类别:
BioLuminescent OptoGenetics (BL-OG): A Novel and Versatile Strategy for Neuromodulation
生物发光光遗传学 (BL-OG):一种新颖且多功能的神经调节策略
- 批准号:
9492447 - 财政年份:2016
- 资助金额:
$ 76.18万 - 项目类别:
BioLuminescent OptoGenetics (BL-OG): A Novel and Versatile Strategy for Neuromodulation
生物发光光遗传学 (BL-OG):一种新颖且多功能的神经调节策略
- 批准号:
9492464 - 财政年份:2016
- 资助金额:
$ 76.18万 - 项目类别:
Employing subcellular calcium to control membrane voltage
利用亚细胞钙来控制膜电压
- 批准号:
9136155 - 财政年份:2015
- 资助金额:
$ 76.18万 - 项目类别:
Genetically Encoded Light-Production and Light-Sensing for Neuronal Manipulation
用于神经元操纵的基因编码光产生和光传感
- 批准号:
8971048 - 财政年份:2014
- 资助金额:
$ 76.18万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 76.18万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 76.18万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 76.18万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 76.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 76.18万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 76.18万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 76.18万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 76.18万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 76.18万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 76.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




