MACE2K - Molecular And Clinical Extraction: A Natural Language Processing Tool for Personalized Medicine
MACE2K - 分子和临床提取:个性化医疗的自然语言处理工具
基本信息
- 批准号:9282279
- 负责人:
- 金额:$ 45.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-22 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBig DataBig Data to KnowledgeBiologicalBiomedical ResearchCancer CenterClinicalClinical Decision Support SystemsClinical TrialsComputer softwareComputing MethodologiesCustomDataData AggregationDatabasesDictionaryDiseaseExclusion CriteriaGene ExpressionGene MutationGenomeGoalsGoldInformaticsInformation RetrievalInvestmentsLettersLiteratureMalignant NeoplasmsManualsMapsMeta-AnalysisMethodsMolecularMolecular ProfilingMolecular TargetMutationNational Cancer InstituteNatural Language ProcessingOncologistOnline SystemsOutcomePatientsPeer ReviewPharmaceutical PreparationsPharmacologyPharmacotherapyPhosphorylationProcessPubMedPublicationsRecording of previous eventsReportingResearchResearch DesignResearch PersonnelSourceStandardizationStructureSystemSystems BiologyTestingTherapeuticTimeUnited States National Institutes of Healthbasecrowdsourcingdata to knowledgedata wranglingdesignimprovedinclusion criteriainnovationinterestknowledge basenovelnovel strategiespersonalized cancer carepersonalized cancer therapypersonalized medicineprogramsprotein expressionpublic health relevancesearch enginesoftware developmentsymposiumtargeted treatmenttooluser friendly softwareverification and validation
项目摘要
DESCRIPTION (provided by applicant): The velocity, variety, volume and veracity of data from relevant information sources make it extremely challenging for oncologists to collect and review pertinent data that can support routine personalized treatment for their patients. There is an urgent need to develop data wrangling approaches including Natural Language Processing and information retrieval methods to extract and curate personalized-therapy related publications and clinical trials. Once curated, the structured data can be used by biomedical researchers to generate novel scientific hypotheses, design new studies, obtain a better understanding of biological mechanisms of disease, perform meta-analyses, and create clinical decision support systems. There is an urgent need to develop improved search interfaces specific to the field of personalized therapy, including ways to display, rank, and save results by
end users. While several database and web-based keyword search engine algorithms exist, there is a lack of tools that meet the unique challenges of personalized medicine. There is also an urgent need to develop software that allows for verification and validation of information extracted and ranked through computational methods using subject matter expertise to improve the gold standard corpus that can be used for biomedical research into personalized therapies. To address these issues, we will build an innovative software stack (MACE2K) to adapt and extend widely tested Biocreative natural language processing (NLP) tools to automatically retrieve and pre-process targeted therapy information from clinicaltrials.gov, PubMed abstracts as well as open access articles, and conference proceedings. We will build an entity extraction cartridge to accurately parse gene mutations, translocations, gene expression, protein expression, and protein phosphorylation. A marker disambiguation cartridge will be built to assess for trial inclusion or exclusion criteria and to determine marker-related primary endpoints. We will include a ranking cartridge that uses the disambiguated information on markers, drugs and trials to provide a rigorous scoring of trials and studies according to their relevance for personalized medicine. A novel gamification cartridge will be built to allow subject matter experts to verify and validate the information corpus. Our research leverages National Cancer Institute's investments in several programs (many of which we are involved in) including the NCI drug dictionary, National Cancer Informatics Program (NCIP), I-SPY trials, and Center for cancer systems biology (CCSB) to efficiently accomplish our aims.
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Platform for Personalized Oncology: Integrative analyses reveal novel molecular signatures associated with colorectal cancer relapse.
个性化肿瘤学平台:综合分析揭示了与结直肠癌复发相关的新分子特征。
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Madhavan,Subha;Gauba,Robinder;Song,Lei;Bhuvaneshwar,Krithika;Gusev,Yuriy;Byers,Steve;Juhl,Hartmut;Weiner,Louis
- 通讯作者:Weiner,Louis
eGARD: Extracting associations between genomic anomalies and drug responses from text.
- DOI:10.1371/journal.pone.0189663
- 发表时间:2017
- 期刊:
- 影响因子:3.7
- 作者:Mahmood ASMA;Rao S;McGarvey P;Wu C;Madhavan S;Vijay-Shanker K
- 通讯作者:Vijay-Shanker K
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Subha Madhavan其他文献
Subha Madhavan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Subha Madhavan', 18)}}的其他基金
MACE2K - Molecular And Clinical Extraction: A Natural Language Processing Tool for Personalized Medicine
MACE2K - 分子和临床提取:个性化医疗的自然语言处理工具
- 批准号:
9146381 - 财政年份:2015
- 资助金额:
$ 45.55万 - 项目类别:
MACE2K - Molecular And Clinical Extraction: A Natural Language Processing Tool for Personalized Medicine
MACE2K - 分子和临床提取:个性化医疗的自然语言处理工具
- 批准号:
8874546 - 财政年份:2015
- 资助金额:
$ 45.55万 - 项目类别:
Informatics Support Center for the Cancer Family Registries
癌症家族登记信息学支持中心
- 批准号:
8537027 - 财政年份:2009
- 资助金额:
$ 45.55万 - 项目类别:
相似海外基金
Big Data Analytics: Optimization Models and Algorithms with Applications in Smart Food Supply Chains and Networks
大数据分析:优化模型和算法在智能食品供应链和网络中的应用
- 批准号:
RGPIN-2020-06792 - 财政年份:2022
- 资助金额:
$ 45.55万 - 项目类别:
Discovery Grants Program - Individual
Large Systems and Big Data: Models, Tools, Analysis, and Algorithms
大型系统和大数据:模型、工具、分析和算法
- 批准号:
RGPIN-2020-04075 - 财政年份:2022
- 资助金额:
$ 45.55万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
- 批准号:
RGPIN-2017-05785 - 财政年份:2022
- 资助金额:
$ 45.55万 - 项目类别:
Discovery Grants Program - Individual
Novel Learning-Based Visual Algorithms and Fusion Methods for High-Dimensional/Multi-Modality Big Data
基于学习的新型高维/多模态大数据视觉算法和融合方法
- 批准号:
RGPIN-2022-02948 - 财政年份:2022
- 资助金额:
$ 45.55万 - 项目类别:
Discovery Grants Program - Individual
(Re)designing Clustering Algorithms for Big Data
(重新)设计大数据聚类算法
- 批准号:
RGPIN-2017-05617 - 财政年份:2022
- 资助金额:
$ 45.55万 - 项目类别:
Discovery Grants Program - Individual
NCS-FO: Connectome mapping algorithms with application to community services for big data neuroscience
NCS-FO:连接组映射算法及其应用于大数据神经科学社区服务
- 批准号:
2203524 - 财政年份:2021
- 资助金额:
$ 45.55万 - 项目类别:
Standard Grant
Big Data Analytics: Optimization Models and Algorithms with Applications in Smart Food Supply Chains and Networks
大数据分析:优化模型和算法在智能食品供应链和网络中的应用
- 批准号:
RGPIN-2020-06792 - 财政年份:2021
- 资助金额:
$ 45.55万 - 项目类别:
Discovery Grants Program - Individual
Exploring Novel Mathematical Models and Efficient Algorithms to Discover Periodic Spatial Patterns in Irregular Spatiotemporal Big Data
探索新颖的数学模型和高效算法以发现不规则时空大数据中的周期性空间模式
- 批准号:
21K12034 - 财政年份:2021
- 资助金额:
$ 45.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comprehensive study of big data clustering algorithms
大数据聚类算法综合研究
- 批准号:
571110-2018 - 财政年份:2021
- 资助金额:
$ 45.55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
(Re)designing Clustering Algorithms for Big Data
(重新)设计大数据聚类算法
- 批准号:
RGPIN-2017-05617 - 财政年份:2021
- 资助金额:
$ 45.55万 - 项目类别:
Discovery Grants Program - Individual