Localizing arithmetic in the developing bilingual brain
在发育中的双语大脑中定位算术
基本信息
- 批准号:9917167
- 负责人:
- 金额:$ 24.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-22 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAreaArithmeticBehavioralBrainBrain regionChildCognitionDataDevelopmentDigit structureEducationEducational InterventionFunctional Magnetic Resonance ImagingFutureGoalsIndividualInferior frontal gyrusInfrastructureLanguageLanguage DevelopmentLearningLearning DisabilitiesLeftLinkMathematicsMeasurementMeasuresMemoryMethodsModelingMultivariate AnalysisOutcome StudyParietal LobePatternPerformancePlant RootsPopulationProblem SolvingProcessPropertyQuality of lifeRegimenResearchResearch SupportResourcesRetrievalSamplingSchool-Age PopulationSchoolsTabletsTemporal LobeTestingTrainingTranslationsWorkbasebilingualismcognitive developmentcognitive processfifth gradefrontal lobeimprovedintraparietal sulcusneural networkrecruitrehearsalrelating to nervous systemresponseskillssupport networktool
项目摘要
PROJECT SUMMARY. Arithmetic facts, such as multiplication tables, are learned through verbal rehearsal. In
turn, children move from solving problems procedurally (e.g., counting on) to retrieving them from verbal memory.
In monolingual children this transition is paralleled by a shift in the supporting brain networks from reliance on
the intraparietal sulcus (IPS), involved in numerical calculation, to relying more on language areas, e.g., left
middle temporal and superior temporal gyri (MTG/STG). For bilinguals, models of arithmetic suggest that this
retrieval process occurs in only one language, or alternatively, that discrete memory stores exist for math facts
in each language. Critically, these models are inconsistent with the growing body of research supporting
interconnected and overlapping language networks in the bilingual brain, modulated by factors such as language
proficiency. This exploratory R21 takes an interdisciplinary perspective, integrating math cognition, cognitive
development, and bilingualism research, with the goal of determining if the neural infrastructure for arithmetic in
bilingual children is shared or separate across their languages. The work builds on findings that bilingual children
show a qualitatively similar language-like brain response during multiplication fact verification in both the
language of learning arithmetic (LA+) and the other language (LA-). In two aims, functional magnetic resonance
imaging (fMRI) will be used in a cross-sectional sample of 3rd through 5th grade bilinguals to determine 1) the
neural networks supporting multiplication fact verification in each language, and 2) if practice in LA- changes
these activation patterns. The research focuses on single-digit multiplication given its strong link to language,
and uses state-of-the-art methods (e.g., functional localizers and multivariate analysis) to compare activation
patterns. Children will judge if the last of three numbers is the correct product of the first two, which will be
presented as spoken number words in English (LA+) and Spanish (LA-), separately (e.g., 2 3 6 versus 2 3 8). If
arithmetic facts follow bilingual verbal representation patterns, then LA+ and LA- will show overlapping activation
patterns in language areas, with recruitment of additional resources for more effortful retrieval. If arithmetic facts
are instead language-specific, as models suggest, then separate neural networks should be observed for LA+
and LA-. In Aim 2, a subset of children will return for a second fMRI session after completing training with
multiplication facts in LA-. LA- should show increased activation in language areas and decreased activation in
additional resources, becoming more similar to LA+ in line with developmental changes. The findings from this
research will inform a new bilingual arithmetic model (BAM), which future research can build on to study other
types of math concepts across the spectrum of bilinguals. It is essential to consider the properties of the bilingual
brain while our understanding of the development of arithmetic skills is in its early stages. This will not only allow
for targeted educational interventions, including for over 11.4 million bilingual children in the US, but will also
allow us to understand the brain’s capacity for processing arithmetic more fully.
项目摘要。算术知识,例如乘法表,是通过口头排练来学习的。在
反过来,孩子们从按程序(例如,指望)解决问题转向从言语记忆中检索问题。
在单语儿童中,这种转变与支持大脑网络从依赖语言的转变同时发生。
顶内沟(IPS),参与数值计算,更多地依赖语言区域,例如左
颞中回和颞上回 (MTG/STG)。对于双语者来说,算术模型表明
检索过程仅以一种语言进行,或者,数学事实存在离散的内存存储
每种语言。重要的是,这些模型与越来越多的研究支持不一致
双语大脑中相互关联和重叠的语言网络,受到语言等因素的调节
熟练程度。这个探索性的 R21 采用跨学科的视角,整合了数学认知、认知
开发和双语研究,目标是确定算术的神经基础设施是否在
双语儿童的语言是共享的或分开的。这项工作建立在以下发现的基础上:双语儿童
在乘法事实验证过程中,表现出类似语言的大脑反应
学习算术的语言 (LA+) 和其他语言 (LA-)。功能磁共振有两个目标
成像 (fMRI) 将用于三年级至五年级双语学生的横断面样本,以确定 1)
支持每种语言的乘法事实验证的神经网络,以及 2) 如果洛杉矶的实践发生变化
这些激活模式。鉴于其与语言的紧密联系,该研究重点关注个位数乘法,
并使用最先进的方法(例如功能定位器和多变量分析)来比较激活
模式。孩子们将判断三个数字中的最后一个数字是否是前两个数字的正确乘积,这将是
分别以英语 (LA+) 和西班牙语 (LA-) 的口语数字词形式呈现(例如,2 3 6 与 2 3 8)。如果
算术事实遵循双语口头表达模式,那么 LA+ 和 LA- 将显示重叠激活
语言领域的模式,并招募额外资源以进行更努力的检索。如果算术事实
相反,正如模型所表明的那样,是特定于语言的,那么应该针对 LA+ 观察单独的神经网络
和洛杉矶-。在目标 2 中,一部分儿童将在完成训练后返回参加第二次功能磁共振成像课程
LA-中的乘法事实。 LA- 应显示语言区域的激活增加,而语言区域的激活减少
额外的资源,随着发展的变化变得与 LA+ 更加相似。由此得出的结论
研究将为新的双语算术模型(BAM)提供信息,未来的研究可以在此基础上研究其他
双语者的数学概念类型。必须考虑双语者的特点
而我们对算术技能发展的理解还处于早期阶段。这不仅可以让
进行有针对性的教育干预,包括针对美国超过 1140 万双语儿童,但也将
让我们更全面地了解大脑处理算术的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicole Yvonne Wicha其他文献
Nicole Yvonne Wicha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicole Yvonne Wicha', 18)}}的其他基金
Brain and Behavior of multiplication fact learning in bilingual children
双语儿童乘法事实学习的大脑和行为
- 批准号:
8914326 - 财政年份:2015
- 资助金额:
$ 24.01万 - 项目类别:
BRAIN AND BEHAVIOR INDEXES OF THE ARITHMETIC ORGANIZATION IN BILINGUALS
双语者算术组织的大脑和行为指数
- 批准号:
7992344 - 财政年份:2010
- 资助金额:
$ 24.01万 - 项目类别:
BRAIN AND BEHAVIOR INDEXES OF THE ARITHMETIC ORGANIZATION IN BILINGUALS
双语者算术组织的大脑和行为指数
- 批准号:
8110478 - 财政年份:2010
- 资助金额:
$ 24.01万 - 项目类别:
Brain and Behavior of Bilingual Language Comprehension
双语理解的大脑与行为
- 批准号:
8303416 - 财政年份:2008
- 资助金额:
$ 24.01万 - 项目类别:
Brain and Behavior of Bilingual Language Comprehension
双语理解的大脑与行为
- 批准号:
7662545 - 财政年份:2008
- 资助金额:
$ 24.01万 - 项目类别:
Brain and Behavior of Bilingual Language Comprehension
双语理解的大脑与行为
- 批准号:
8115019 - 财政年份:2008
- 资助金额:
$ 24.01万 - 项目类别:
Brain and Behavior of Bilingual Language Comprehension
双语理解的大脑与行为
- 批准号:
7430022 - 财政年份:2008
- 资助金额:
$ 24.01万 - 项目类别:
Brain and Behavior of Bilingual Language Comprehension
双语理解的大脑与行为
- 批准号:
7882469 - 财政年份:2008
- 资助金额:
$ 24.01万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 24.01万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 24.01万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 24.01万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 24.01万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2013
- 资助金额:
$ 24.01万 - 项目类别:
Discovery Grants Program - Individual
Low power, area efficient, high speed algorithms and architectures for computer arithmetic, pattern recognition and digital filters
用于计算机算术、模式识别和数字滤波器的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2008 - 财政年份:2012
- 资助金额:
$ 24.01万 - 项目类别:
Discovery Grants Program - Individual
Low power, area efficient, high speed algorithms and architectures for computer arithmetic, pattern recognition and digital filters
用于计算机算术、模式识别和数字滤波器的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2008 - 财政年份:2011
- 资助金额:
$ 24.01万 - 项目类别:
Discovery Grants Program - Individual
Low power, area efficient, high speed algorithms and architectures for computer arithmetic, pattern recognition and digital filters
用于计算机算术、模式识别和数字滤波器的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2008 - 财政年份:2010
- 资助金额:
$ 24.01万 - 项目类别:
Discovery Grants Program - Individual
Surveillance study about the literacy in the elementary and junior high schools Japanese, and arithmetic and mathematics of the Okinawa detached island area
冲绳离岛地区中小学日语、算术、数学读写能力的监测研究
- 批准号:
22653110 - 财政年份:2010
- 资助金额:
$ 24.01万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Low power, area efficient, high speed algorithms and architectures for computer arithmetic, pattern recognition and digital filters
用于计算机算术、模式识别和数字滤波器的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2008 - 财政年份:2009
- 资助金额:
$ 24.01万 - 项目类别:
Discovery Grants Program - Individual