Deep Learning and Streaming Analytics for Prediction of Adverse Events in the ICU
用于预测 ICU 不良事件的深度学习和流分析
基本信息
- 批准号:9983413
- 负责人:
- 金额:$ 19.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-03 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse eventAffectAlgorithmsAmericanAntibioticsAntihypertensive AgentsBedsBenchmarkingBig DataBlood PressureCaringClinicClinicalClinical DataCollectionCommunicationComputerized Medical RecordComputersCritical CareCritical IllnessDataData AnalysesData SetDatabasesDecision TreesDeteriorationDifferential EquationDisease ProgressionEarly DiagnosisEnsureEnvironmentGoalsHeart RateHospital MortalityHospitalizationHospitalsHourInflammationInflammation MediatorsInflammatory ResponseIntensive Care UnitsInterventionIntravenousLaboratoriesLinkLiquid substanceLiteratureMachine LearningMeasurementMedicalMedicareMedicineMethodsMicrobiologyModelingModernizationMonitorMorphologic artifactsNatureOrganPathologicPatient MonitoringPatientsPatternPattern RecognitionPerformancePharmaceutical PreparationsPhysiologicalReportingReproducibilityResearchResearch PersonnelResolutionResuscitationRiskRisk AssessmentRisk stratificationSCAP2 geneSamplingSepsisSeriesSerumSeverity of illnessStreamSystemTechniquesTechnologyTelemedicineTestingTherapeutic InterventionTimeUnited StatesValidationVisitWorkbasebeneficiarycohortcostdata acquisitiondeep learningexperiencefeedinghigh dimensionalityimprovedmachine learning algorithmmathematical modelmortality riskmulti-scale modelingmultimodalitynoveloutcome forecastparallel computerpatient safetyphysiologic modelportabilityprognosticpublic health relevancerespiratorysafety practicesensorseptic patientssimulationstandard of caretime use
项目摘要
DESCRIPTION (provided by applicant)
Critical care medicine in the United States costs over 80 billion dollars annually. Over the past decade the rate of intensive care unit (ICU) use has been increasing, with a recent study reporting almost one in three Medicare beneficiaries experiencing an ICU visit during the last month of their lives. Every year, sepsis, a medical condition characterized by whole-body inflammation, strikes between 800,000 and 3.1 million Americans, killing approximately one in four patients affected. There is currently no definite treatment for sepsis in spite of many clinicl trials. However, early detection of sepsis and timely initiation of interventions are widely considered as important determinants of patient survival. However, basic care tasks (such as microbiological sampling and antibiotic delivery within 1 h, fluid resuscitation, and risk stratification using serum lactate or alternative), which are known to benefit most patients, are not performed in a timely manner. Previous literature suggests that high-resolution vital signs (such as heart rate, blood pressure, respiratory rate, etc.), and other sequential measurements within the electronic medical records (EMRs), can be dynamically integrated using Machine Learning techniques to help with early detection of sepsis. With the ubiquity of inexpensive high- capacity storage and high-bandwidth streaming technology it is now possible to monitor patients' vital signs continuously (for instance, the research application developed by the Emory hospital ICU uses IBM's streaming analytics platform to transmit over 100,000 real-time data points per 100 beds, per second). Despite this continuous feed of data, commonly used acuity scores, such as APACHE and SAPS, are based on snapshot values of these vital signs (typically the worst values during a 24 hours period). This limitation is partially due to unavailability of computationally efficient and robust algorithms capable of finding predictive features in multivariate, nonlinear and nonstationary sequential data, which may reveal inter- organ communication and disintegration of causal couplings with critical illnesses such as sepsis. We have recently developed a novel Machine Learning algorithm to discover automatically a collection of predictive multivariate dynamical patterns in a database of patient time-series, which can be used to classify patients or to monitor progression of disease in a given patient. The primary goal of this proposal is to apply our method to assess the predictive power of high- resolution multivariate time-series of vital signs and sequentially recorded EMR data in the ICU for early detection of sepsis and risk stratification of septic patient. To accomplish this, we aim to benchmark our technique on a large ICU cohort (the MIMIC II database with over 60,000 patients), as well as simulated data from a multiscale mathematical model of influence of inflammatory mediators on dynamical patterns of vital signs. Next, the technique will be externally validated on two separate ICU sepsis cohorts (the Emory Sepsis dataset and the Mayo Clinic Metric dataset). Finally, we will provide a real-time implementation of the proposed algorithm in an streaming environment (such as the IBM streaming analytics), in order to address the Big Data challenge of harnessing real-time, streaming sensor data from bedside monitors within the ICU, while enabling advanced pattern recognition and real-time forecasting. Ultimately we believe these methods can change the current standard of care through faster recognition and initiation of basic care, as well as guiding interventional strategis based on severity of illness and mechanisms underlying physiological deterioration.
描述(由申请人提供)
美国的重症医学每年花费超过800亿美元。在过去的十年中,重症监护病房(ICU)的使用率一直在增加,最近的一项研究报告说,几乎三分之一的医疗保险受益人在生命的最后一个月内经历了ICU访问。每年,败血症,一种以全身炎症为特征的医学疾病,袭击80万至310万美国人,造成约四分之一的患者死亡。尽管有许多临床试验,但目前仍没有明确的治疗败血症的方法。然而,脓毒症的早期发现和及时开始干预被广泛认为是患者生存的重要决定因素。然而,已知对大多数患者有益的基本护理任务(如1小时内微生物采样和抗生素输送、液体复苏和使用血清乳酸盐或替代品进行风险分层)没有及时执行。先前的文献表明,高分辨率的生命体征(如心率、血压、呼吸频率等),以及电子医疗记录(EMR)内的其他顺序测量,可以使用机器学习技术动态集成,以帮助早期检测败血症。随着廉价的大容量存储和高带宽流技术的普及,现在可以连续监测患者的生命体征(例如,埃默里医院ICU开发的研究应用程序使用IBM的流分析平台每秒每100张病床传输超过100,000个实时数据点)。尽管这种数据的连续馈送,但常用的敏锐度评分(诸如APACHE和SAPS)是基于这些生命体征的快照值(通常是24小时期间的最差值)。这种限制部分是由于无法获得能够在多变量、非线性和非平稳序列数据中找到预测特征的计算有效和鲁棒的算法,这可能揭示器官间通信和与诸如败血症的危重疾病的因果耦合的解体。 我们最近开发了一种新的机器学习算法,可以在患者时间序列数据库中自动发现预测性多变量动态模式的集合,这些模式可以用于对患者进行分类或监测给定患者的疾病进展。该提案的主要目标是应用我们的方法来评估ICU中生命体征的高分辨率多变量时间序列和顺序记录的EMR数据的预测能力,以用于脓毒症的早期检测和脓毒症患者的风险分层。为了实现这一目标,我们的目标是在一个大型ICU队列(超过60,000名患者的MIMIC II数据库)上对我们的技术进行基准测试,以及来自炎症介质对生命体征动态模式影响的多尺度数学模型的模拟数据。接下来,该技术将在两个单独的ICU脓毒症队列(Emory脓毒症数据集和马约诊所指标数据集)上进行外部验证。最后,我们将在流媒体环境(如IBM流媒体分析)中提供所提出算法的实时实现,以解决利用ICU内床边监护仪的实时流媒体传感器数据的大数据挑战,同时实现高级模式识别和实时预测。最终,我们相信这些方法可以通过更快地识别和启动基本护理来改变当前的护理标准,以及根据疾病的严重程度和生理恶化的机制指导干预策略。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Contextual Embeddings from Clinical Notes Improves Prediction of Sepsis
- DOI:10.1101/2021.03.02.21252779
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Fatemeh Amrollahi;S. Shashikumar;Fereshteh Razmi;S. Nemati
- 通讯作者:Fatemeh Amrollahi;S. Shashikumar;Fereshteh Razmi;S. Nemati
A comparison of entropy approaches for AF discrimination.
AF 判别熵方法的比较
- DOI:10.1088/1361-6579/aacc48
- 发表时间:2018-07-06
- 期刊:
- 影响因子:3.2
- 作者:Liu C;Oster J;Reinertsen E;Li Q;Zhao L;Nemati S;Clifford GD
- 通讯作者:Clifford GD
An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU.
- DOI:10.1097/ccm.0000000000002936
- 发表时间:2018-04
- 期刊:
- 影响因子:8.8
- 作者:Nemati S;Holder A;Razmi F;Stanley MD;Clifford GD;Buchman TG
- 通讯作者:Buchman TG
Discriminating clinical phases of recovery from major depressive disorder using the dynamics of facial expression.
利用面部表情的动态来区分重度抑郁症恢复的临床阶段。
- DOI:10.1109/embc.2016.7591178
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Harati,Sahar;Crowell,Andrea;Mayberg,Helen;JunKong;Nemati,Shamim
- 通讯作者:Nemati,Shamim
Doubly-Robust Estimation of Effect of Imaging Resource Utilization on Discharge Decisions in Emergency Departments.
影像资源利用对急诊科出院决策影响的双稳健估计。
- DOI:10.1109/embc.2018.8513076
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Tabaie,Azade;Chokshi,FalgunH;Holder,AndreL;Nemati,ShamimNemati
- 通讯作者:Nemati,ShamimNemati
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAMIM NEMATI其他文献
SHAMIM NEMATI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAMIM NEMATI', 18)}}的其他基金
Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
- 批准号:
10610420 - 财政年份:2022
- 资助金额:
$ 19.02万 - 项目类别:
Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
- 批准号:
10420954 - 财政年份:2022
- 资助金额:
$ 19.02万 - 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
- 批准号:
10277331 - 财政年份:2021
- 资助金额:
$ 19.02万 - 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
- 批准号:
10439876 - 财政年份:2021
- 资助金额:
$ 19.02万 - 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
- 批准号:
10626899 - 财政年份:2021
- 资助金额:
$ 19.02万 - 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
- 批准号:
10827775 - 财政年份:2021
- 资助金额:
$ 19.02万 - 项目类别:
Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
- 批准号:
10265157 - 财政年份:2020
- 资助金额:
$ 19.02万 - 项目类别:
San Diego Biomedical Informatics Education & Research (SABER)
圣地亚哥生物医学信息学教育
- 批准号:
10616765 - 财政年份:2012
- 资助金额:
$ 19.02万 - 项目类别:
San Diego Biomedical Informatics Education & Research (SABER)
圣地亚哥生物医学信息学教育
- 批准号:
10406030 - 财政年份:2012
- 资助金额:
$ 19.02万 - 项目类别:
相似海外基金
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 19.02万 - 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
- 批准号:
479728 - 财政年份:2023
- 资助金额:
$ 19.02万 - 项目类别:
Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
- 批准号:
10884567 - 财政年份:2023
- 资助金额:
$ 19.02万 - 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
- 批准号:
10751964 - 财政年份:2023
- 资助金额:
$ 19.02万 - 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
- 批准号:
486321 - 财政年份:2022
- 资助金额:
$ 19.02万 - 项目类别:
Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10676786 - 财政年份:2022
- 资助金额:
$ 19.02万 - 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10440970 - 财政年份:2022
- 资助金额:
$ 19.02万 - 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
- 批准号:
10642998 - 财政年份:2022
- 资助金额:
$ 19.02万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10482465 - 财政年份:2022
- 资助金额:
$ 19.02万 - 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
- 批准号:
10191053 - 财政年份:2020
- 资助金额:
$ 19.02万 - 项目类别:














{{item.name}}会员




