Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
基本信息
- 批准号:10265157
- 负责人:
- 金额:$ 39.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-25 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAcute Renal Failure with Renal Papillary NecrosisAdverse eventAlgorithmsAntibioticsArchitectureArea Under CurveArtificial IntelligenceBiometryCalibrationCaringCessation of lifeCodeCollaborationsCollectionComputer softwareComputersConfidence IntervalsCritical IllnessDataData ElementData ProvenanceData SetData SourcesDevelopmentDevicesEffectivenessElectronic Health RecordEnsureEnvironmentEvaluationEventExpenditureFast Healthcare Interoperability ResourcesFrequenciesFundingGeneral HospitalsGoalsHealthHealth ExpendituresHeterogeneityHospital CostsHospital MortalityHospitalizationHospitalsHourIncidenceIndividualInfectionInflammationInstitutionIntensive Care UnitsLearningLength of StayLifeMeasurementMeasuresMedicalMetadataMethodologyMethodsModelingMorbidity - disease rateOrgan failureOutcomePatient-Focused OutcomesPatientsPatternPerformancePharmaceutical PreparationsPilot ProjectsPopulationPredictive AnalyticsPreventionProcessReproducibilityResearchResearch PersonnelRiskRisk AssessmentRisk EstimateSavingsSepsisSeptic ShockSiteSourceStandardizationTestingTimeTrainingUncertaintyVariantWorkacute careaging populationauthoritybasecloud baseddeep learningdemographicsdesignimprovedinterestnovelpatient populationpatient responsepersonalized careportabilityprediction algorithmpredictive modelingpressurepreventprospectiveresearch and developmentresponseseptic patientstheoriestooltreatment optimizationward
项目摘要
Sepsis, Septic Shock, and Acute Kidney Injury (AKI) are among the top causes of hospital mortality,
morbidity, and an increase in duration and cost of hospitalization. Successful prevention and management
of these conditions rely on the ability of clinicians to estimate the risk, and ideally, to anticipate and prevent
these events. Acute care settings and in particular intensive care units (ICUs) provide an environment
where an immense amount of data is acquired, and it is expected that with the advent of wearables and
biometric patches even more data will be available in such settings. But at present, very little of these data
are used effectively to prognosticate, and the existing predictive analytics risk scores suffer from lack of
generalizability across institutions and performance degradation within the same institution over time.
The PIs on this proposal recently demonstrated that a Deep Learning-based algorithm can reliably predict
new sepsis cases in the emergency departments, general hospital wards, and ICUs by as much as 4-6
hours in advance and an area under the curve (ROC) of 0.85-0.90. Furthermore, through a 2-year pilot
study funded via Biomedical Advanced Research and Development Authority (BARDA), we recently joined
forces in a multicenter academic consortium to retrospectively validate this algorithm at each site. Our
collaboration has resulted in a multi-center longitudinal EHR dataset of critically ill patients and has
generated several important questions and findings related to design of portable and generalizable
predictive analytics algorithms that are robust to problems arising from gaps, errors, and biases in
electronic health records (EHRs) due to workflow-related factors (e.g. staffing-level), and heterogeneity of
patient populations and measurement devices.
We propose to continue our prior work by designing new deep learning architectures that are more robust
to data missingness and biases introduced through the variability in process of care, 2) development of
new learning methodologies to improve generalizability of the proposed models under data/population
drifts (aka distributional changes), 3) enhanced metadata design to assist in quantifying ‘conditions for use’
of such algorithms via algorithmic controls, and 4) HL7 and FHIR-based prospective implementation and
testing of these methodologies to provide real-world evidence for the effectiveness of the proposed
approaches. Ultimately, these novel methodologies and tools will enhance our ability to use EHR and other
types of continuously measured longitudinal data to predict adverse events, assess patients’ response to
therapy, and optimize and personalize care at the beside.
败血症、感染性休克和急性肾损伤(AKI)是医院死亡的主要原因,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAMIM NEMATI其他文献
SHAMIM NEMATI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAMIM NEMATI', 18)}}的其他基金
Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
- 批准号:
10610420 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
- 批准号:
10420954 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
- 批准号:
10277331 - 财政年份:2021
- 资助金额:
$ 39.4万 - 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
- 批准号:
10439876 - 财政年份:2021
- 资助金额:
$ 39.4万 - 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
- 批准号:
10626899 - 财政年份:2021
- 资助金额:
$ 39.4万 - 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
- 批准号:
10827775 - 财政年份:2021
- 资助金额:
$ 39.4万 - 项目类别:
Deep Learning and Streaming Analytics for Prediction of Adverse Events in the ICU
用于预测 ICU 不良事件的深度学习和流分析
- 批准号:
9983413 - 财政年份:2019
- 资助金额:
$ 39.4万 - 项目类别:
San Diego Biomedical Informatics Education & Research (SABER)
圣地亚哥生物医学信息学教育
- 批准号:
10616765 - 财政年份:2012
- 资助金额:
$ 39.4万 - 项目类别:
San Diego Biomedical Informatics Education & Research (SABER)
圣地亚哥生物医学信息学教育
- 批准号:
10406030 - 财政年份:2012
- 资助金额:
$ 39.4万 - 项目类别:














{{item.name}}会员




