GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors

使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)

基本信息

  • 批准号:
    10827775
  • 负责人:
  • 金额:
    $ 7.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Abstract Sepsis, a heterogeneous syndrome characterized by whole-body inflammation caused by the body's response to an infection, is the most expensive and deadly condition treated in hospitals, with over 270,000 cases of sepsis-related deaths in the U.S. alone. Untreated sepsis may result in dilated and leaky blood vessels and severe hypotension requiring vasoactive medications (aka septic shock), and eventual injury to kidneys, lungs, and liver (aka organ injury) with mortality rates in excess of 40%. Successful prevention and management of sepsis, septic shock, and organ injury rely on the ability of clinicians to anticipate and estimate the risk, and administer the right life-saving treatments (e.g., antibiotics, fluids and vasopressors) at the right time. In recent years, data-driven modeling has been shown to enable early prediction of sepsis and to reveal clusters (or phenotypes) of sepsis, which may help with personalizing therapeutic interventions. However, crossing the translational chasm between clinical research and improving patient care also requires addressing 1) `data deserts' at different levels of care through better data integration, smarter lab ordering, and utilization of continuous monitoring wearable sensors; 2) interoperability and portability of clinical data and analytics; 3) principled dissemination and implementation studies; and 4) education of the next generation of caregivers to effectively utilize advanced analytical tools. The proposed research program builds upon PI's K01 early career development award focused on multicenter development and validation of sepsis predictive analytic algorithms (including hourly EHR data spanning ED and inpatient encounters from over 500,000 hospitalized patients across five district healthcare systems). Drawing insights from recent advances in domain adaptation and multi-task learning (sub-fields of machine learning), this project aims to discover generalizable dynamic phenotypes that are directly relevant to the prediction and management of sepsis, septic shock, and downstream organ injury. We propose to augment EHR-based analytics with high-resolution data from bedside devices (e.g., monitors, ventilators, dialysis, and IV pumps) and wearables (e.g., continuous blood pressure and lactate sensors) to address existing gaps in monitoring. Additionally, this program aims at advancing FHIR (Fast Healthcare Interoperability Resources) and OMOP (Observational Medical Outcomes Partnership) interoperability standards through the implementation of specific resources for high-resolution data sources. Finally, this research program will be conducted in close collaboration with our dissemination and implementation and hospital quality improvement teams to ensure early assessment of usability, barriers to implementation, and effective education to maximize the potential for clinical impact.
摘要

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting Hospital Readmission among Patients with Sepsis using Clinical and Wearable Data.
使用临床和可穿戴数据预测脓毒症患者的再入院率。
  • DOI:
    10.1101/2023.04.10.23288368
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amrollahi,Fatemeh;Shashikumar,SupreethPrajwal;Yhdego,Haben;Nayebnazar,Arshia;Yung,Nathan;Wardi,Gabriel;Nemati,Shamim
  • 通讯作者:
    Nemati,Shamim
Optimizing the Implementation of Clinical Predictive Models to Minimize National Costs: Sepsis Case Study.
  • DOI:
    10.2196/43486
  • 发表时间:
    2023-02-13
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Rogers, Parker;Boussina, Aaron E.;Shashikumar, Supreeth P.;Wardi, Gabriel;Longhurst, Christopher A.;Nemati, Shamim
  • 通讯作者:
    Nemati, Shamim
Impact of a deep learning sepsis prediction model on quality of care and survival.
  • DOI:
    10.1038/s41746-023-00986-6
  • 发表时间:
    2024-01-23
  • 期刊:
  • 影响因子:
    15.2
  • 作者:
  • 通讯作者:
Leveraging clinical data across healthcare institutions for continual learning of predictive risk models.
  • DOI:
    10.1038/s41598-022-12497-7
  • 发表时间:
    2022-05-19
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
Artificial intelligence sepsis prediction algorithm learns to say "I don't know".
  • DOI:
    10.1038/s41746-021-00504-6
  • 发表时间:
    2021-09-09
  • 期刊:
  • 影响因子:
    15.2
  • 作者:
    Shashikumar SP;Wardi G;Malhotra A;Nemati S
  • 通讯作者:
    Nemati S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHAMIM NEMATI其他文献

SHAMIM NEMATI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHAMIM NEMATI', 18)}}的其他基金

Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
  • 批准号:
    10610420
  • 财政年份:
    2022
  • 资助金额:
    $ 7.15万
  • 项目类别:
Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
  • 批准号:
    10420954
  • 财政年份:
    2022
  • 资助金额:
    $ 7.15万
  • 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
  • 批准号:
    10277331
  • 财政年份:
    2021
  • 资助金额:
    $ 7.15万
  • 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
  • 批准号:
    10439876
  • 财政年份:
    2021
  • 资助金额:
    $ 7.15万
  • 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
  • 批准号:
    10626899
  • 财政年份:
    2021
  • 资助金额:
    $ 7.15万
  • 项目类别:
Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
  • 批准号:
    10265157
  • 财政年份:
    2020
  • 资助金额:
    $ 7.15万
  • 项目类别:
Deep Learning and Streaming Analytics for Prediction of Adverse Events in the ICU
用于预测 ICU 不良事件的深度学习和流分析
  • 批准号:
    9983413
  • 财政年份:
    2019
  • 资助金额:
    $ 7.15万
  • 项目类别:
San Diego Biomedical Informatics Education & Research (SABER)
圣地亚哥生物医学信息学教育
  • 批准号:
    10616765
  • 财政年份:
    2012
  • 资助金额:
    $ 7.15万
  • 项目类别:
San Diego Biomedical Informatics Education & Research (SABER)
圣地亚哥生物医学信息学教育
  • 批准号:
    10406030
  • 财政年份:
    2012
  • 资助金额:
    $ 7.15万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了