Mega-scale Identification tools for xenobiotic metabolism
外源代谢的大规模鉴定工具
基本信息
- 批准号:9981744
- 负责人:
- 金额:$ 88.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAutomationBiochemicalBioinformaticsBiologicalCellsChemical StructureChemicalsClinical SciencesCommunitiesComplexDatabasesDetectionDevelopmentDiseaseDissociationDrug Metabolic DetoxicationEducational workshopEnvironmentEnvironmental HealthEnzymesEvolutionFoodFoundationsGenesGoalsGrantHumanHuman bodyInstitutesIonsMass Spectrum AnalysisMetabolicMetabolic BiotransformationMetabolismMethodsMonitorNMR SpectroscopyNational Institute of Environmental Health SciencesOrganismPatternPharmaceutical PreparationsPreparationProcessProductionProteinsPublicationsResearchResearch InfrastructureResearch SupportResolutionRoboticsScientistServicesStructureSubcellular FractionsSystemTestingTimeTrainingTranslational ResearchUnited States National Institutes of HealthXenobiotic MetabolismXenobioticsadductbasebiological systemscomputational chemistrydesigndietary supplementsenvironmental chemicalepidemiology studyhuman diseaseimprovedmetabolomicsmicrobiomeorganizational structureoutreachprogramsprospectivepublic health relevancerobotic systemscale upsmall molecule librariesstable isotopesymposiumtooltool developmentultra high resolution
项目摘要
Project Summary
Human evolution has created complex metabolism systems to transform and eliminate potentially harmful
chemicals to which we are exposed. Available evidence indicates that these systems generate a million or
more different chemical metabolites, most of which are completely uncharacterized. Widespread use of mass
spectrometry-based metabolomics methods shows that many unidentified mass spectral features are
significantly associated with human diseases. Substantial epidemiological research implicates environmental
contributions to many disease processes, and we believe that many of the unidentified mass spectral features
are metabolites of environmental chemicals. We have an established and successful human exposome
research center focused on improving the understanding of environmental contributions to disease. The
present proposal is to build upon this foundation to develop powerful new chemical identification tools that can
be scaled to identify hundreds of thousands of foreign chemical metabolites in the human body. We have
assembled an exposome research team of analytical scientists with expertise in mass spectrometry, xenobiotic
metabolism, computational chemistry and robotic methods, to develop and test new chemical identification
tools to identify hundreds of thousands of foreign chemical metabolites. Our approach relies upon expertise in
1) computational chemistry to predict possible xenobiotic metabolites, respective adduct forms and ion
dissociation patterns in mass spectrometry, 2) use of enzymatic and cellular xenobiotic biotransformation
systems, which allows creation of multi-well panels containing specific biotransformation systems to generate
xenobiotic metabolites, 3) ion fragmentation mass spectrometry and NMR spectroscopy methods to confirm
chemical identities and 4) expertise with robotic systems which can be used to scale the approach to identify
hundreds of thousands of metabolites of environmental chemicals. An Administrative Core will maintain an
organizational structure and coordinate activities between the Experimental Core and the Computational Core,
NIH and the Stakeholder Engagement and Program Coordination Center (SEPCC). The Experimental Core
will develop and provide compound identification capability with ultra-high-resolution mass spectrometry
support. The Computational Core will develop a predicted xenobiotic metabolite database to support
metabolite identification. The Administrative Core will maintain interactions with HERCULES Exposome
Research Center and support interactions with prospective Core users. Milestones are established to monitor
progress toward goals to establish tools for compound identification that can be scaled to identify hundreds of
thousands of foreign chemical metabolites. The results will catalyze metabolomics research by providing new
ways to identify unknown metabolites of environmental chemicals, and also support identification of a broader
range of metabolites of drugs, food, microbiome, dietary supplements and commercial products.
项目概要
人类进化创造了复杂的新陈代谢系统来转化和消除潜在的有害物质
我们接触到的化学物质。现有证据表明这些系统产生了一百万或
更多不同的化学代谢物,其中大多数完全没有特征。质量的广泛使用
基于光谱分析的代谢组学方法表明,许多未识别的质谱特征是
与人类疾病密切相关。大量流行病学研究表明环境
对许多疾病过程的贡献,我们相信许多未识别的质谱特征
是环境化学物质的代谢物。我们拥有成熟且成功的人体暴露试验
研究中心致力于提高人们对环境对疾病影响的认识。这
目前的建议是在此基础上开发强大的新型化学品识别工具,这些工具可以
可以扩展以识别人体内数十万种外来化学代谢物。我们有
组建了一个由分析科学家组成的暴露组研究团队,他们具有质谱、外源性物质的专业知识
新陈代谢、计算化学和机器人方法,开发和测试新的化学鉴定
识别数十万种外来化学代谢物的工具。我们的方法依赖于以下方面的专业知识
1) 计算化学来预测可能的外源代谢物、各自的加合物形式和离子
质谱法中的解离模式,2) 使用酶促和细胞外源生物转化
系统,它允许创建包含特定生物转化系统的多孔面板,以产生
外源代谢物,3)离子碎裂质谱和核磁共振波谱方法确认
化学特性和 4) 机器人系统的专业知识,可用于扩展识别方法
数十万种环境化学物质的代谢物。行政核心将维持
实验核心和计算核心之间的组织结构和协调活动,
NIH 和利益相关者参与和项目协调中心 (SEPCC)。实验核心
将开发并提供超高分辨率质谱的化合物识别能力
支持。计算核心将开发一个预测的外源代谢物数据库来支持
代谢物鉴定。行政核心将与 HERCULES Exposome 保持互动
研究中心并支持与潜在核心用户的互动。设立里程碑来监控
在建立化合物鉴定工具的目标方面取得进展,这些工具可以扩展以鉴定数百种
数千种外来化学代谢物。研究结果将通过提供新的方法来促进代谢组学研究
识别环境化学品未知代谢物的方法,并支持更广泛的识别
药物、食品、微生物组、膳食补充剂和商业产品的一系列代谢物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dean Paul Jones其他文献
Dean Paul Jones的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dean Paul Jones', 18)}}的其他基金
Mega-scale Identification tools for xenobiotic metabolism
外源代谢的大规模鉴定工具
- 批准号:
10201601 - 财政年份:2018
- 资助金额:
$ 88.92万 - 项目类别:
Mega-scale Identification tools for xenobiotic metabolism
外源代谢的大规模鉴定工具
- 批准号:
9769022 - 财政年份:2018
- 资助金额:
$ 88.92万 - 项目类别:
High-Resolution Plasma Metabolomic Profiling to Identify Biomarkers for Tuberculosis Disease and Response to Therapy
高分辨率血浆代谢组学分析可识别结核病生物标志物和治疗反应
- 批准号:
9300433 - 财政年份:2017
- 资助金额:
$ 88.92万 - 项目类别:
High-Resolution Plasma Metabolomic Profiling to Identify Biomarkers for Tuberculosis Disease and Response to Therapy
高分辨率血浆代谢组学分析可识别结核病生物标志物和治疗反应
- 批准号:
9432482 - 财政年份:2017
- 资助金额:
$ 88.92万 - 项目类别:
Georgia Comprehensive Metabolomics and Proteomics Unit for MoTrPAC
佐治亚州 MoTrPAC 综合代谢组学和蛋白质组学单位
- 批准号:
9246760 - 财政年份:2016
- 资助金额:
$ 88.92万 - 项目类别:
Metabolomics of subclinical and clinical cardiovascular disease
亚临床和临床心血管疾病的代谢组学
- 批准号:
8625332 - 财政年份:2012
- 资助金额:
$ 88.92万 - 项目类别:
Metabolomics of subclinical and clinical cardiovascular disease
亚临床和临床心血管疾病的代谢组学
- 批准号:
8286494 - 财政年份:2012
- 资助金额:
$ 88.92万 - 项目类别:
Metabolomics of subclinical and clinical cardiovascular disease
亚临床和临床心血管疾病的代谢组学
- 批准号:
8463610 - 财政年份:2012
- 资助金额:
$ 88.92万 - 项目类别:
相似海外基金
Treecle - data and automation to unlock woodland creation in the UK to achieve net zero
Treecle - 数据和自动化解锁英国林地创造以实现净零排放
- 批准号:
10111492 - 财政年份:2024
- 资助金额:
$ 88.92万 - 项目类别:
SME Support
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
$ 88.92万 - 项目类别:
Cooperative Agreement
Improving access to AI automation to support new digital offerings within Professional/Financial Services
改善对人工智能自动化的访问,以支持专业/金融服务中的新数字产品
- 批准号:
10095096 - 财政年份:2024
- 资助金额:
$ 88.92万 - 项目类别:
Collaborative R&D
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
- 批准号:
10104748 - 财政年份:2024
- 资助金额:
$ 88.92万 - 项目类别:
Launchpad
Sustainable Remanufacturing solution with increased automation and recycled content in laser and plasma based process (RESTORE)
可持续再制造解决方案,在基于激光和等离子的工艺中提高自动化程度和回收内容(RESTORE)
- 批准号:
10112149 - 财政年份:2024
- 资助金额:
$ 88.92万 - 项目类别:
EU-Funded
Next-generation automation and PAT implementation for QbD and enhanced approaches for cell and gene therapy
QbD 的下一代自动化和 PAT 实施以及细胞和基因治疗的增强方法
- 批准号:
10087446 - 财政年份:2024
- 资助金额:
$ 88.92万 - 项目类别:
Collaborative R&D
SBIR Phase II: Radar-based Building Automation
SBIR 第二阶段:基于雷达的楼宇自动化
- 批准号:
2335079 - 财政年份:2024
- 资助金额:
$ 88.92万 - 项目类别:
Cooperative Agreement
Automation and cost reduction of the hardware and software components of a novel indoor sustainable vertical growing solution
新型室内可持续垂直种植解决方案的硬件和软件组件的自动化和成本降低
- 批准号:
83007861 - 财政年份:2024
- 资助金额:
$ 88.92万 - 项目类别:
Innovation Loans
Artificial intelligence coupled to automation for accelerated medicine design
人工智能与自动化相结合,加速药物设计
- 批准号:
EP/Z533038/1 - 财政年份:2024
- 资助金额:
$ 88.92万 - 项目类别:
Research Grant
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
- 批准号:
2340273 - 财政年份:2024
- 资助金额:
$ 88.92万 - 项目类别:
Continuing Grant














{{item.name}}会员




