A neuronal process of the error signal that drives saccade adaptation
驱动扫视适应的误差信号的神经元过程
基本信息
- 批准号:10213731
- 负责人:
- 金额:$ 44.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAgeAgingAgonistBasal GangliaBehavioralBiological ModelsBrainCerebellar CortexCerebellar vermis structureCerebellumCharacteristicsClinical ResearchComplexDissociationDysmetriaFiberFingersFundingGoalsGrantHyperactivityInferiorInjectionsInjuryLearningMeasuresModelingMonkeysMotorMovementMuscimolNervous System TraumaNeuronsNoiseOlives - dietaryOutcomeOutputParkinson DiseasePathway interactionsPatientsProcessPurkinje CellsRecoveryRehabilitation therapyRoleSaccadesShapesSideSignal TransductionSourceSpeedStrokeStructureSubstantia nigra structureSystemTestingTheoretical modelVisualdopaminergic neuronexperimental studyimprovedinsightmotor impairmentmotor learningneuromechanismneurophysiologyoculomotorrelating to nervous systemrepairedresponsesuperior colliculus Corpora quadrigemina
项目摘要
Project Summary/Abstract
An impaired movement due to stroke, injury or aging recovers gradually. Can we speed up the
recovery process to achieve the rehabilitation faster? To repair an inaccurate movement, the brain measures
the error of the movement, namely the mismatch between the desired movement and the actual dysmetric
movement, and changes the movement to minimize the error. This process is called motor adaptation. The
speed of adaptation depends on its sensitivity to the error, i.e., the higher the error sensitivity, the faster the
adaptation. Theoretical models and neurophysiological studies suggest that the complex spikes of Purkinje
cells in the cerebellum encode the error. However, the neurons that deal with the error sensitivity are unknown.
Knowing the neuronal mechanisms that control error sensitivity has important implications for setting strategies
for the most efficient recovery strategy.
In our last grant, we used saccade adaptation as a model system of motor adaptation. When we
arranged that each saccade missed its target by a constant error, the adaptation speed decreased gradually
during the adaptation session. This indicates that the sensitivity to the constant error decreased during the
session. We found that the visual sensitivity of superior colliculus (SC) neurons decreased as the error
sensitivity decreased. The visual activity of the SC has been suggested as a source of the complex spikes in
the cerebellum, which encode the error of the movement. Therefore, the SC visual activity could provide an
error sensitivity signal to the cerebellum.
In this next grant period, we propose to examine how the visual activity of SC neurons is shaped to
encode the error sensitivity. Many brain structures project to the SC, but one of the best candidates to shape
SC activity is the Substantia Nigra pars reticulata (SNr) of the basal ganglia because it inhibits the SC directly.
Moreover, because patients with Parkinson’s disease, which affects the basal ganglia, show a slower saccade
adaptation, it seems likely that the basal ganglia affect the signal that controls the adaptation speed.
To test this hypothesis, we will study the SNr with three complementary approaches. First, we will
record SNr activity during saccade adaptation and determine whether any component of SNr discharge is
related to error sensitivity. Second, we will determine the effect of SNr inactivation on saccade adaptation. We
expect that inactivation will affect the adaptation speed. Third, we will determine the effect that SNr
inactivation has on the activity of SC neurons. We expect that SNr inactivation will influence the visual activity
of neurons in the rostral SC, which is related to the error sensitivity.
We predict that the results of these three projects will reveal a previously unsuspected role for the basal
ganglia in controlling the adaptation speed for cerebellar-dependent motor adaptation.
项目概要/摘要
由于中风、受伤或衰老而导致的运动受损会逐渐恢复。我们可以加快
恢复过程如何更快地实现康复?为了修复不准确的运动,大脑会测量
运动误差,即期望运动与实际运动失调之间的不匹配
运动,并改变运动以最小化误差。这个过程称为运动适应。这
适应的速度取决于其对误差的敏感度,即误差敏感度越高,适应的速度越快。
适应。理论模型和神经生理学研究表明,浦肯野病毒的复杂尖峰
小脑细胞对错误进行编码。然而,处理错误敏感性的神经元尚不清楚。
了解控制错误敏感性的神经机制对于制定策略具有重要意义
最有效的恢复策略。
在我们的上一次资助中,我们使用眼跳适应作为运动适应的模型系统。当我们
安排每次扫视都以恒定的误差错过目标,适应速度逐渐下降
在适应会议期间。这表明对恒定误差的敏感度在
会议。我们发现上丘(SC)神经元的视觉敏感性随着误差的增加而降低。
敏感性下降。 SC 的视觉活动被认为是复杂尖峰的来源
小脑,编码运动误差。因此,SC视觉活动可以提供
向小脑发出的错误敏感信号。
在下一个资助期内,我们建议研究 SC 神经元的视觉活动是如何形成的
对错误敏感度进行编码。许多大脑结构都投射到 SC,但塑造 SC 的最佳候选结构之一
SC 活性是基底神经节的黑质网状部 (SNr),因为它直接抑制 SC。
此外,由于影响基底神经节的帕金森病患者的眼跳速度较慢
适应,基底神经节似乎可能影响控制适应速度的信号。
为了检验这个假设,我们将使用三种互补的方法来研究 SNr。首先,我们将
记录扫视适应期间的 SNr 活动并确定 SNr 放电的任何组成部分是否
与误差敏感度有关。其次,我们将确定 SNr 失活对眼跳适应的影响。我们
预计失活会影响适应速度。第三,我们将确定 SNr 的影响
失活对 SC 神经元的活性有影响。我们预计 SNr 失活会影响视觉活动
吻侧 SC 神经元的数量,这与错误敏感性有关。
我们预测这三个项目的结果将揭示基础细胞以前未曾怀疑的作用
神经节控制小脑依赖性运动适应的适应速度。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yoshiko Kojima其他文献
Yoshiko Kojima的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yoshiko Kojima', 18)}}的其他基金
Neural mechanisms of motor adaptation for an internally driven movement
内部驱动运动的运动适应神经机制
- 批准号:
10417657 - 财政年份:2023
- 资助金额:
$ 44.4万 - 项目类别:
A neuronal process of the error signal that drives saccade adaptation
驱动扫视适应的误差信号的神经元过程
- 批准号:
8704942 - 财政年份:2013
- 资助金额:
$ 44.4万 - 项目类别:
A neuronal process of the error signal that drives saccade adaptation
驱动扫视适应的误差信号的神经元过程
- 批准号:
9325519 - 财政年份:2013
- 资助金额:
$ 44.4万 - 项目类别:
A neuronal process of the error signal that drives saccade adaptation
驱动扫视适应的误差信号的神经元过程
- 批准号:
8595698 - 财政年份:2013
- 资助金额:
$ 44.4万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Phenomenon of Stem Cell Aging according to Methylation Estimates of Age After Hematopoietic Stem Cell Transplantation
根据造血干细胞移植后甲基化年龄估算干细胞衰老现象
- 批准号:
23K07844 - 财政年份:2023
- 资助金额:
$ 44.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Age-dependent Functional Changes in Skeletal Muscle CB1 Receptors by an in Vitro Model of Aging-related Muscle Atrophy
通过衰老相关性肌肉萎缩的体外模型分析骨骼肌 CB1 受体的年龄依赖性功能变化
- 批准号:
22KJ2960 - 财政年份:2023
- 资助金额:
$ 44.4万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Joint U.S.-Japan Measures for Aging and Dementia Derived from the Prevention of Age-Related and Noise-induced Hearing Loss
美日针对预防与年龄相关和噪声引起的听力损失而导致的老龄化和痴呆症联合措施
- 批准号:
23KK0156 - 财政年份:2023
- 资助金额:
$ 44.4万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
The Effects of Muscle Fatigability on Gait Instability in Aging and Age-Related Falls Risk
肌肉疲劳对衰老步态不稳定性和年龄相关跌倒风险的影响
- 批准号:
10677409 - 财政年份:2023
- 资助金额:
$ 44.4万 - 项目类别:
Characterizing gut physiology by age, frailty, and sex: assessing the role of the aging gut in "inflamm-aging"
按年龄、虚弱和性别表征肠道生理学特征:评估衰老肠道在“炎症衰老”中的作用
- 批准号:
497927 - 财政年份:2023
- 资助金额:
$ 44.4万 - 项目类别:
Deciphering the role of osteopontin in the aging eye and age-related macular degeneration
破译骨桥蛋白在眼睛老化和年龄相关性黄斑变性中的作用
- 批准号:
10679287 - 财政年份:2023
- 资助金额:
$ 44.4万 - 项目类别:
Role of AGE/RAGEsignaling as a driver of pathological aging in the brain
AGE/RAGE信号传导作为大脑病理性衰老驱动因素的作用
- 批准号:
10836835 - 财政年份:2023
- 资助金额:
$ 44.4万 - 项目类别:
Elucidation of the protein kinase NLK-mediated aging mechanisms and treatment of age-related diseases
阐明蛋白激酶NLK介导的衰老机制及年龄相关疾病的治疗
- 批准号:
23K06378 - 财政年份:2023
- 资助金额:
$ 44.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Underlying mechanisms of age-related changes in ingestive behaviors: From the perspective of the aging brain and deterioration of the gustatory system.
与年龄相关的摄入行为变化的潜在机制:从大脑老化和味觉系统退化的角度来看。
- 批准号:
23K10845 - 财政年份:2023
- 资助金额:
$ 44.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Targeting Age-Activated Proinflammatory Chemokine Signaling by CCL2/11 to Enhance Skeletal Muscle Regeneration in Aging
通过 CCL2/11 靶向年龄激活的促炎趋化因子信号传导以增强衰老过程中的骨骼肌再生
- 批准号:
478877 - 财政年份:2023
- 资助金额:
$ 44.4万 - 项目类别:
Operating Grants














{{item.name}}会员




