Evaluating overlap and distinctiveness in neurocomputational loss and reward elements of the RDoC matrix
评估 RDoC 矩阵的神经计算损失和奖励元素的重叠和独特性
基本信息
- 批准号:10312509
- 负责人:
- 金额:$ 78.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-21 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AnhedoniaAnxietyBayesian ModelingBehavioralCategoriesCharacteristicsClassificationClinicalClinical DataCognitive TherapyComputer ModelsComputing MethodologiesCoupledDataDepressed moodDevelopmentDiagnosisDiagnosticDimensionsDiseaseElementsEnsureEnvironmentImageIndividualLeadLearningLinkMachine LearningManualsMeasuresMental DepressionMental HealthMental disordersModelingMoodsNational Institute of Mental HealthNegative ValenceNeurosciencesOutcomeParticipantPositioning AttributePositive ValenceProcessProtocols documentationPsychiatryPsychopathologyRandomizedResearch Domain CriteriaRewardsRoleSamplingScientistSpecificityStructureSymptomsTask PerformancesTechniquesTestingTimeTranslatingValidationVisitWorkarmbaseclinically relevantclinically significantimprovednegative moodneurobehavioralneuroimagingnovelsymptom treatmenttrait
项目摘要
PROJECT SUMMARY/ABSTRACT
Evidence indicates that disruptions in loss and reward valuation exist across traditional psychiatric diagnostic
categories, and these elements are featured in the NIMH Research Domain Criteria matrix. However,
validating these features of the RDoC matrix and determining the translational utility of loss and reward
valuation requires at least three critical advances: i) understanding the elements’ relational structure (i.e., to
what extent are loss and reward valuation linked or distinct), ii) establishing the functional relevance of
valuation measures (i.e., which features of loss and reward valuation are related to which symptoms), and iii)
determining the stability or lack thereof of the elements and relationships between the elements (i.e.,
determining which valuation features are state-like vs trait-like). To work toward validating valuation elements
and their relevance to psychopathology, we respond to RFA-MH-19-242 (Computational Approaches for
Validating Dimensional Constructs of Relevance to Psychopathology). Specifically, we take a data-driven,
computational psychiatry approach merging clinical and experimental data to delineate relationships among
computationally derived components of loss and reward valuation and with symptoms in a large sample of
participants with clinically significant mood, anxiety, or anhedonia (Aim 1). In Aims 2 and 3, we incorporate a
mechanistic trial to assess whether components of and relationships between loss and reward valuation are
sensitive to change a) over time, b) following 12 sessions of instructed valuation (Aim 2), or c) following
cognitive behavioral therapy (Aim 3). If successful, we believe there is immense opportunity to bridge
behaviorally-oriented clinicians and computational (neuro)scientists and advance the field by mapping
symptoms to neuromechanistic disease processes and spurring the development of new neurobehaviorally-
guided treatment approaches. As required by the RFA, this application assesses multiple constructs (loss and
reward valuation constructs and learning subconstructs) in the Negative and Positive Valence RDoC domains,
using multiple tasks and levels of data.
项目总结/摘要
有证据表明,在传统的精神病诊断中,
类别,这些元素在NIMH研究领域标准矩阵中有特色。然而,在这方面,
验证RDoC矩阵的这些特征,并确定损失和回报的转化效用
估价需要至少三个关键的进展:i)理解元素的关系结构(即,到
损失和报酬的估价在多大程度上是联系在一起的或不同的),ii)确定
估值措施(即,损失和奖励评估的哪些特征与哪些症状有关),以及iii)
确定元素的稳定性或缺乏稳定性以及元素之间的关系(即,
确定哪些估值特征是状态类对特质类)。努力验证评估要素
及其与精神病理学的相关性,我们回应RFA-MH-19-242(计算方法,
验证与精神病理学相关的维度结构)。具体来说,我们采取数据驱动,
计算精神病学方法合并临床和实验数据,以描述
计算得出的损失和回报估值的组成部分,并在一个大样本的症状,
具有临床显著情绪、焦虑或快感缺乏的参与者(目标1)。在目标2和3中,我们纳入了
机械试验,以评估损失和回报估值的组成部分和关系是否
对变化敏感a)随着时间的推移,B)经过12次指示估值(目标2),或c)
认知行为疗法(目标3)。如果成功,我们相信有巨大的机会,
行为导向的临床医生和计算(神经)科学家,并通过映射推进该领域
症状到神经机械疾病过程,并刺激新的神经行为的发展,
指导治疗方法。根据RFA的要求,该应用程序评估多个结构(损失和
奖励评价结构和学习子结构),
使用多个任务和数据级别。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PEARL H CHIU其他文献
PEARL H CHIU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PEARL H CHIU', 18)}}的其他基金
Sub-second neurochemistry of error signals and affective processing in depression
抑郁症中错误信号和情感处理的亚秒神经化学
- 批准号:
10665721 - 财政年份:2022
- 资助金额:
$ 78.89万 - 项目类别:
Sub-second neurochemistry of error signals and affective processing in depression
抑郁症中错误信号和情感处理的亚秒神经化学
- 批准号:
10453962 - 财政年份:2022
- 资助金额:
$ 78.89万 - 项目类别:
Evaluating overlap and distinctiveness in neurocomputational loss and reward elements of the RDoC matrix
评估 RDoC 矩阵的神经计算损失和奖励元素的重叠和独特性
- 批准号:
10455059 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Evaluating overlap and distinctiveness in neurocomputational loss and reward elements of the RDoC matrix
评估 RDoC 矩阵的神经计算损失和奖励元素的重叠和独特性
- 批准号:
10647805 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Making connections among social ties, neural sensitivity to social signals, and outcomes
在社会关系、社会信号的神经敏感性和结果之间建立联系
- 批准号:
10490468 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Social influences on choices in adolescent substance use
社会对青少年物质使用选择的影响
- 批准号:
10220529 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Social influences on choices in adolescent substance use
社会对青少年物质使用选择的影响
- 批准号:
10378098 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Social influences on choices in adolescent substance use
社会对青少年物质使用选择的影响
- 批准号:
10552640 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Making connections among social ties, neural sensitivity to social signals, and outcomes
在社会关系、对社会信号的神经敏感性和结果之间建立联系
- 批准号:
10629370 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Making connections among social ties, neural sensitivity to social signals, and outcomes
在社会关系、对社会信号的神经敏感性和结果之间建立联系
- 批准号:
10200497 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
相似海外基金
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 78.89万 - 项目类别:
Fellowship
Clinitouch-360: A digital health platform enabling robust end-to-end care of patients in Primary Care with depression and anxiety
Clinitouch-360:数字健康平台,可为初级保健中的抑郁和焦虑患者提供强大的端到端护理
- 批准号:
10098274 - 财政年份:2024
- 资助金额:
$ 78.89万 - 项目类别:
Collaborative R&D
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 78.89万 - 项目类别:
Visual analysis system to detect and predict the signs of anxiety in healthcare
用于检测和预测医疗保健中焦虑迹象的视觉分析系统
- 批准号:
2902083 - 财政年份:2024
- 资助金额:
$ 78.89万 - 项目类别:
Studentship
Using generative AI combined with immersive technology to treat anxiety disorders
利用生成式人工智能结合沉浸式技术治疗焦虑症
- 批准号:
10109165 - 财政年份:2024
- 资助金额:
$ 78.89万 - 项目类别:
Launchpad
Healthy Young Minds: co-producing a nature-based intervention with rural High School students to promote mental well-being and reduce anxiety
健康的年轻心灵:与农村高中生共同开展基于自然的干预措施,以促进心理健康并减少焦虑
- 批准号:
MR/Z503599/1 - 财政年份:2024
- 资助金额:
$ 78.89万 - 项目类别:
Research Grant
"Flashforward" imagery and anxiety in young adults: Risk mechanisms and intervention development
年轻人的“闪现”意象和焦虑:风险机制和干预措施的发展
- 批准号:
MR/Y009460/1 - 财政年份:2024
- 资助金额:
$ 78.89万 - 项目类别:
Fellowship
How parents manage climate anxiety: coping and hoping for the whole family
父母如何应对气候焦虑:全家人的应对和希望
- 批准号:
DP230101928 - 财政年份:2024
- 资助金额:
$ 78.89万 - 项目类别:
Discovery Projects
An innovative biofeedback enhanced adaptive extended reality (XR) device to reduce perinatal pain and anxiety during and after childbirth
一种创新的生物反馈增强型自适应扩展现实 (XR) 设备,可减少分娩期间和分娩后的围产期疼痛和焦虑
- 批准号:
10097862 - 财政年份:2024
- 资助金额:
$ 78.89万 - 项目类别:
Collaborative R&D
Application name Phase Space - VR hypnotherapy as early intervention for anxiety in students and young people
应用程序名称 Phase Space - VR 催眠疗法作为学生和年轻人焦虑的早期干预
- 批准号:
10055011 - 财政年份:2023
- 资助金额:
$ 78.89万 - 项目类别:
Collaborative R&D