Computational Social Science Training Program
计算社会科学培训计划
基本信息
- 批准号:10640080
- 负责人:
- 金额:$ 17.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project Summary/Abstract
The Computational Social Science Training Program (CSSTP) at UC Berkeley provides training in advanced
analytics to predoctoral students in the social and behavioral sciences studying health topics covered by the
Eunice Kennedy Shriver National Institute for Child and Human Development. CSSTP is a new program that
combines Berkeley's long-standing strength in quantitative social and behavioral science with its nationally-
recognized campus programs in data science education, practice, and research. It will serve five entering
trainees per year over five years. The training faculty includes 22 social scientists who have exemplary records
of developing and applying novel statistical methods to health-related social/behavioral science problems, as
well as 13 data scientists who are leading figures in the foundations of mathematics, statistics/biostatistics, and
computer science. Trainees, who will be drawn from a diverse pool of students in six social science doctoral
programs, are provided with a rigorous and tailored program designed to teach a team science-based approach
to problem solving and to emphasize the analysis of intensive or voluminous longitudinal data and high-density,
large sample or population level agency databases. Each trainee is supported by a dual-preceptor model in
which s/he is provided with a social sciences faculty mentor and a data science mentor who help to facilitate the
trainee's progress through the program. CSSTP trainees are provided with community space at the Berkeley
Institute for Data Science (BIDS), a dynamic multi-disciplinary data science research center, where trainees
work alongside other data science fellows in residence. After completing their first-year course requirements in
their home departments, trainees formally enter the program in their second year of graduate school, devise an
individual development plan, and take a core two-semester course in computational social science, team-taught
by training faculty. This course introduces students to essential data science methods and tools, including
Python programming, data management, natural language processing, machine learning, causal inference, and
responsible conduct and reproducibility of research, through lectures, in-depth discussion of social science
applications, and small group learning exercises. In the following year, students apply these skills through
placements on collaborative health-related research teams or labs on campus and/or with external industry
partners, thus developing skills in advanced analytics through research practice involving the development and
implementation of new methods. Additional training tailored to student needs and interests is provided through
elective courses, a weekly computational social science workshop series, and ongoing working groups at the
Berkeley Institute for Data Science and the Social Science D-Lab, a campus hub for data science training and
research for social scientists. CSSTPs benefits will ripple out to the greater campus and beyond by stimulating
new faculty collaborations and by creating a critical mass of rigorously trained computational social science
students who will be competitive and qualified for jobs in rapidly changing and evolving data intensive fields.
项目摘要/摘要
加州大学伯克利分校的计算社会科学培训计划(CSSTP)提供高级
面向学习健康主题的社会和行为科学博士后
尤尼斯·肯尼迪·施莱弗国家儿童与人类发展研究所。CSSTP是一个新的计划,
将伯克利在定量社会和行为科学方面的长期实力与其在全国范围内的-
在数据科学教育、实践和研究方面获得认可的校园计划。它将可供五人入场
五年内每年培训一名学员。培训人员包括22名具有模范记录的社会科学家
开发和应用新的统计方法来解决与健康有关的社会/行为科学问题,如
以及13位数据科学家,他们是数学、统计学/生物统计学基础方面的领军人物,以及
计算机科学。受训者将从六名社会科学博士的不同学生中挑选
计划,提供了严格和量身定做的计划,旨在教授团队以科学为基础的方法
为了解决问题,强调对密集或大量的纵向数据和高密度的分析,
大型样本或总体水平的机构数据库。每个实习生都有一个双教官模型支持
S/他被提供一名社会科学教师导师和一名数据科学导师,帮助促进
实习生在整个项目中的进步。CSSTP学员在伯克利分校获得社区空间
数据科学研究所(BIDS),一个动态的多学科数据科学研究中心,学员
与其他常驻数据科学研究员一起工作。在完成第一年的课程要求后
他们的国内部门,实习生在他们研究生院的第二年正式进入这个项目,设计一个
个人发展计划,并参加计算社会科学的两学期核心课程,团队授课
通过培训教师。本课程向学生介绍基本的数据科学方法和工具,包括
Python编程、数据管理、自然语言处理、机器学习、因果推理和
负责任的行为和研究的再现性,通过讲座,深入讨论社会科学
应用程序和小组学习练习。在接下来的一年里,学生们通过
在校园和/或与外部行业合作的健康相关研究团队或实验室中的安置
合作伙伴,从而通过涉及开发和开发的研究实践发展高级分析技能
实施新办法。根据学生的需要和兴趣提供的额外培训通过
选修课、每周一次的计算社会科学研讨会系列,以及
伯克利数据科学研究所和社会科学D-Lab,数据科学培训和
面向社会科学家的研究。CSSTP的好处将通过以下方式波及更大的校园和更远的地方
新的教员合作,并通过创建大量经过严格培训的计算社会科学
在快速变化和发展的数据密集型领域具有竞争力和胜任工作的学生。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Power of Empathy: Experimental Evidence of the Impact of Perspective-Focused Interventions on Support for Prison Reform.
同理心的力量:以视角为中心的干预措施对支持监狱改革的影响的实验证据。
- DOI:10.1177/08874034211061326
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Harney,Jessie
- 通讯作者:Harney,Jessie
Incidence, Timing, and Factors Associated With Suicide Among Patients Undergoing Surgery for Cancer in the US.
美国接受癌症手术的患者自杀的发生率、时间和相关因素。
- DOI:10.1001/jamaoncol.2022.6549
- 发表时间:2023
- 期刊:
- 影响因子:28.4
- 作者:Potter,AlexandraL;Haridas,Chinmay;Neumann,Krista;Kiang,MathewV;Fong,ZhiVen;Riddell,CorinneA;PopeJr,HarrisonG;Yang,Chi-FuJeffrey
- 通讯作者:Yang,Chi-FuJeffrey
Understanding Multiprogram Take-Up of Safety Net Programs Among California Families.
了解加州家庭安全网计划的多项目实施情况。
- DOI:10.1016/j.focus.2024.100216
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Tsai,MarisaM;Yeb,JosephA;Jackson,KaitlynE;Gosliner,Wendi;Fernald,LiaCH;Hamad,Rita
- 通讯作者:Hamad,Rita
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PATRICK T BRADSHAW其他文献
PATRICK T BRADSHAW的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
SBIR Phase I: Scalable, on-demand, research-based, help-seeking innovation for learners in virtual and recorded training programs
SBIR 第一阶段:通过虚拟和录制的培训项目为学习者提供可扩展、按需、基于研究、寻求帮助的创新
- 批准号:
2151406 - 财政年份:2023
- 资助金额:
$ 17.88万 - 项目类别:
Standard Grant
Development and evaluation of training programs for students engaged in teaching assistants at universities
高校助教学生培养方案的制定与评估
- 批准号:
23K02511 - 财政年份:2023
- 资助金额:
$ 17.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Teacher Training Programs to Promote School Safety
制定教师培训计划以促进学校安全
- 批准号:
23K02056 - 财政年份:2023
- 资助金额:
$ 17.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Education DCL: EAGER: Developing Sector-specific Cybersecurity Training Programs: What are the Benefits to Students and Employers?
教育 DCL:EAGER:制定针对特定行业的网络安全培训计划:对学生和雇主有什么好处?
- 批准号:
2335748 - 财政年份:2023
- 资助金额:
$ 17.88万 - 项目类别:
Standard Grant
Development of Elementary Programming Education Practices and Construction of Training Programs to foster AI Literacy
开发基础编程教育实践并构建培训项目以培养人工智能素养
- 批准号:
22K02575 - 财政年份:2022
- 资助金额:
$ 17.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Analysis of Japanese High School EFL Learner Interaction: Developing Meaningful Teacher Training Programs
日本高中 EFL 学习者互动分析:制定有意义的教师培训计划
- 批准号:
22K00755 - 财政年份:2022
- 资助金额:
$ 17.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Program development and analysis of human resource training programs for highly specialized patient safety managers
高度专业化的患者安全管理人员人力资源培训计划的计划开发和分析
- 批准号:
22K10413 - 财政年份:2022
- 资助金额:
$ 17.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Perceptions of English Dyslexia and its Formation Process in College English Teacher Training Programs
大学英语教师培训中对英语阅读障碍的认知及其形成过程
- 批准号:
21K00737 - 财政年份:2021
- 资助金额:
$ 17.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Expanding program evaluation capacity and enhancing training programs through alumni perspectives
通过校友视角扩大项目评估能力并加强培训项目
- 批准号:
10592969 - 财政年份:2021
- 资助金额:
$ 17.88万 - 项目类别:
Group-supervised neuromuscular training programs in the treatment of soldiers with musculoskeletal disorders - A randomized controlled trial
治疗患有肌肉骨骼疾病的士兵的团体监督神经肌肉训练计划 - 一项随机对照试验
- 批准号:
454991 - 财政年份:2021
- 资助金额:
$ 17.88万 - 项目类别:
Fellowship Programs