Identifying Cancer Recurrence with Novel Data Linkages with a Cancer Registry
通过与癌症登记处的新数据关联来识别癌症复发
基本信息
- 批准号:10522203
- 负责人:
- 金额:$ 67.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Accident and Emergency departmentAccreditationAlgorithmsAmbulatory Surgical ProceduresAmerican College of SurgeonsBackBiochemicalBreastCancer PatientCancer SurvivorCaringCause of DeathCharacteristicsClinical TrialsCodeCollectionComputerized Medical RecordCustomDataData CollectionData LinkagesData SourcesDatabasesDeath CertificatesDenmarkDiagnosisDisease-Free SurvivalEthnic OriginEvaluationEventFrightGenerationsGoldHealthHealth Maintenance OrganizationsHealth care facilityHispanic PopulationsHospitalsIncidenceIndividualInpatientsLinkMalignant NeoplasmsMalignant neoplasm of prostateMedical RecordsMedicareMedicare claimMethodsNational Cancer InstituteNational Cancer ProgramPathology ReportPatientsPerformancePopulationPopulation DatabasePopulation StudyPositioning AttributePredictive ValueProceduresProstateProtocols documentationRaceRecurrenceRegistriesReportingResearchResearch PersonnelRiskRuralRural PopulationSEER ProgramSourceStressStructureTrainingTreatment EffectivenessTreatment EfficacyUtahValidationWomanWorkbasebreast cancer registrycancer recurrencecancer sitecancer typeclinical practicecostdata registrydata streamsethnic diversityhealth recordimprovedlearning algorithmmalignant breast neoplasmmenmultiple data sourcesneoplasm registrynovelpatient registrypopulation basedprediction algorithmprimary endpointpublic databaseracial diversitysoundsurvivorship
项目摘要
ABSTRACT
For the estimated 17 million cancer survivors in the US today, fear of recurrence is a substantial source of
stress and an issue that drives survivorship care. Understanding the scope of recurrence among cancer
survivors can inform clinical practice, improve patient health, and allow for real-world assessment of treatment
effectiveness. Population-level data on cancer recurrence are difficult to capture, and require evaluation of
multiple data sources to accurately identify cancer recurrences. The Utah Cancer Registry (UCR), a SEER
registry since 1973, is strongly positioned to identify recurrences in a population-based setting. The registry
data are linked to the Utah Population Database (UPDB), which includes electronic medical records (EMR),
statewide healthcare facility data (SHFD; inpatient, ambulatory surgery and emergency department), and
claims data (All Payer Claims Database (APCD), Medicare). We propose to assess the utility of using data
sources common across all state cancer registries and to investigate the added value of novel data linkages
available at the Utah Cancer Registry. We also propose to extend and validate a recently-developed algorithm
to identify individual level breast cancer recurrence to identify recurrence for other cancer types to estimate the
population-level burden of recurrence. Our specific aims are as follows: 1) Determine the predictive
performance to identify recurrence using data currently available to cancer registries for breast and
prostate cancer. These would include Commission on Cancer recurrence variables, electronic pathology
reports, and death certificates. 2) Estimate the improvements in predictive performance to identify
recurrence by inclusion of novel administrative data linkage for breast and prostate cancer. 3) Evaluate
the scalability and transportability of recurrence identifying algorithms across settings and
populations for research. We will validate the algorithms’ predictive performance by estimating positive and
negative predictive values among a racially and ethnically diverse collection of cancer cases from the Seattle-
Puget Sound SEER registry, including comparisons of performance across race/ethnicity, age, stage, and
rural/urban status. In addition, we will validate the breast recurrence identification algorithm recently developed
in the Seattle registry in the Utah breast cancer population. No algorithms currently exist to evaluate the data
sources individually and combined to identify recurrence events based on cancer registry and administrative
data. Our results will inform the predictive performance for routinely available data and the value added of
administrative data sources, which may be differentially complete and/or costly to procure. Our work will
establish a path forward for population-level tracking of cancer recurrence and facilitate prioritization of data
generation efforts and algorithms that can be customized based on the data available in different situations.
1
摘要
对于今天美国估计的1700万癌症幸存者来说,对复发的恐惧是他们死亡的主要原因。
压力和一个推动生存护理的问题。了解癌症复发的范围
幸存者可以告知临床实践,改善患者健康,并允许对治疗进行真实世界的评估
有效性关于癌症复发的人群水平数据难以获取,需要评估
多个数据源,以准确识别癌症复发。犹他州癌症登记处(UCR),SEER
登记处自1973年以来,是强有力的定位,以确定复发的人口为基础的设置。书记官处
数据链接到犹他州人口数据库(EIB),其中包括电子医疗记录(EMR),
全州医疗机构数据(SHFD;住院、门诊手术和急诊科),以及
索赔数据(所有付款人索赔数据库(APCD),医疗保险)。我们建议评估使用数据的效用
所有国家癌症登记处的共同来源,并调查新数据链接的附加值
可在犹他州癌症登记处获得。我们还建议扩展和验证最近开发的算法
确定个体水平的乳腺癌复发,确定其他癌症类型的复发,
人口水平的复发负担。我们的具体目标如下:1)确定预测
使用目前可用于乳腺癌登记的数据识别复发的性能,
前列腺癌这些将包括癌症复发变量委员会,电子病理学
报告和死亡证明2)估计预测性能的改进,以确定
通过纳入乳腺癌和前列腺癌的新管理数据关联来确定复发率。3)评价
跨设置的递归识别算法的可扩展性和可移植性,
人口研究。我们将通过估计正的和负的,
在来自西雅图的不同种族和人种的癌症病例中,
Puget Sound SEER登记研究,包括不同人种/种族、年龄、分期和
农村/城市状况。此外,我们将验证最近开发的乳房复发识别算法
在西雅图登记的犹他州乳腺癌人群中。目前没有算法来评估数据
根据癌症登记和管理,
数据我们的研究结果将为常规可用数据的预测性能和
行政数据源,这些数据源可能不完全和/或采购成本高。我们的工作将
为癌症复发的人群水平跟踪建立前进的道路,并促进数据的优先排序
生成工作和算法,可以根据不同情况下可用的数据进行定制。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIA HASHIBE其他文献
MIA HASHIBE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIA HASHIBE', 18)}}的其他基金
Identifying Cancer Recurrence with Novel Data Linkages with a Cancer Registry
通过与癌症登记处的新数据关联来识别癌症复发
- 批准号:
10673736 - 财政年份:2022
- 资助金额:
$ 67.95万 - 项目类别:
Utah Advanced Course on Mentorship and Leadership on Cancer-Related Health Disparities
犹他州癌症相关健康差异的指导和领导高级课程
- 批准号:
10368933 - 财政年份:2020
- 资助金额:
$ 67.95万 - 项目类别:
Long-Term Adverse Outcomes Among Rural Cancer Survivors in a Population-Based Cohort
基于人群的农村癌症幸存者的长期不良后果
- 批准号:
10437842 - 财政年份:2020
- 资助金额:
$ 67.95万 - 项目类别:
Utah Advanced Course on Mentorship and Leadership on Cancer-Related Health Disparities
犹他州癌症相关健康差异的指导和领导高级课程
- 批准号:
9905159 - 财政年份:2020
- 资助金额:
$ 67.95万 - 项目类别:
Long-Term Adverse Outcomes Among Rural Cancer Survivors in a Population-Based Cohort
基于人群的农村癌症幸存者的长期不良后果
- 批准号:
10218125 - 财政年份:2020
- 资助金额:
$ 67.95万 - 项目类别:
Long-Term Adverse Outcomes Among Rural Cancer Survivors in a Population-Based Cohort
基于人群的农村癌症幸存者的长期不良后果
- 批准号:
10653702 - 财政年份:2020
- 资助金额:
$ 67.95万 - 项目类别:
Utah Advanced Course on Cancer-related Health Disparities Research, Mentoring, & Leadership
犹他州癌症相关健康差异研究高级课程、指导、
- 批准号:
10555969 - 财政年份:2020
- 资助金额:
$ 67.95万 - 项目类别:
Improving Our Understanding of Late Oral Health Effects in Head and Neck Cancer Survivors
提高我们对头颈癌幸存者晚期口腔健康影响的了解
- 批准号:
9768426 - 财政年份:2018
- 资助金额:
$ 67.95万 - 项目类别:
Population-based Cohort of Endometrial Cancer Survivors in Utah
犹他州基于人群的子宫内膜癌幸存者队列
- 批准号:
8814097 - 财政年份:2015
- 资助金额:
$ 67.95万 - 项目类别:
相似海外基金
Chimella application for Sap points accreditation
Chimella 申请 Sap 积分认证
- 批准号:
10106576 - 财政年份:2024
- 资助金额:
$ 67.95万 - 项目类别:
Collaborative R&D
heata - SAP Accreditation Stage 5b
heata - SAP 认证阶段 5b
- 批准号:
10104998 - 财政年份:2024
- 资助金额:
$ 67.95万 - 项目类别:
Collaborative R&D
Accreditation for Analogue Quantum Computing Systems
模拟量子计算系统认证
- 批准号:
2741223 - 财政年份:2022
- 资助金额:
$ 67.95万 - 项目类别:
Studentship
Harnessing heat from compute: SAP Accreditation
利用计算的热量:SAP 认证
- 批准号:
10017625 - 财政年份:2022
- 资助金额:
$ 67.95万 - 项目类别:
Collaborative R&D
Comparative Inquiry of Teacher Accreditation Requirements
教师认证要求的比较查询
- 批准号:
17K04553 - 财政年份:2021
- 资助金额:
$ 67.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comparison of AAVLD Laboratory Accreditation Requirements V 2021.01 with ISO17025:2017
AAVLD 实验室认可要求 V 2021.01 与 ISO17025:2017 的比较
- 批准号:
10215868 - 财政年份:2020
- 资助金额:
$ 67.95万 - 项目类别:
Expansion of Pennsylvania's State Food and Feed Laboratory Services in Response to the 2011 Food Safety Modernization Act, Laboratory Accreditation Rule, and the FDA Integrated Food Safety System
为响应 2011 年食品安全现代化法案、实验室认可规则和 FDA 综合食品安全系统,扩大宾夕法尼亚州食品和饲料实验室服务
- 批准号:
10176002 - 财政年份:2020
- 资助金额:
$ 67.95万 - 项目类别:
Expansion of Pennsylvania's State Food and Feed Laboratory Services in Response to the 2011 Food Safety Modernization Act, Laboratory Accreditation Rule, and the FDA Integrated Food Safety System
为响应 2011 年食品安全现代化法案、实验室认可规则和 FDA 综合食品安全系统,扩大宾夕法尼亚州食品和饲料实验室服务
- 批准号:
10256693 - 财政年份:2020
- 资助金额:
$ 67.95万 - 项目类别:
Expansion of Pennsylvania's State Food and Feed Laboratory Services in Response to the 2011 Food Safety Modernization Act, Laboratory Accreditation Rule, and the FDA Integrated Food Safety System
为响应 2011 年食品安全现代化法案、实验室认可规则和 FDA 综合食品安全系统,扩大宾夕法尼亚州食品和饲料实验室服务
- 批准号:
10447639 - 财政年份:2020
- 资助金额:
$ 67.95万 - 项目类别:
Expansion of Pennsylvania's State Food and Feed Laboratory Services in Response to the 2011 Food Safety Modernization Act, Laboratory Accreditation Rule, and the FDA Integrated Food Safety System
为响应 2011 年食品安全现代化法案、实验室认可规则和 FDA 综合食品安全系统,扩大宾夕法尼亚州食品和饲料实验室服务
- 批准号:
10675467 - 财政年份:2020
- 资助金额:
$ 67.95万 - 项目类别: