Mechanisms that alter Potassium channel trafficking in arrhythmias
改变心律失常中钾通道运输的机制
基本信息
- 批准号:10524297
- 负责人:
- 金额:$ 24.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:ArrhythmiaBindingBiological AssayCell membraneCell surfaceCellsDNADevelopmentEarly EndosomeEndosomesEngineeringEnvironmentEquilibriumGenerationsGolgi ApparatusHalf-LifeHeartHeterogeneityIncubatedInduced MutationIon ChannelIonsKiller CellsKnowledgeLeadLinkLong QT SyndromeMapsMeasuresMembraneMembrane PotentialsMethodsMissense MutationMolecular ConformationMutationOrganellesPathway interactionsPharmaceutical PreparationsPlasmaPotassium ChannelProbabilityRecyclingReporterResearchTechnologyTestingTimeVariantWorkbaseendosome membraneexperienceextracellularhigh throughput screeningimprovedinnovationmutantpH gradientpreservationpreventprototypetooltraffickingtrans-Golgi Networkvoltage clamp
项目摘要
Project Summary
The pro-arrhythmic long QT syndrome (LQTS) is commonly caused by drugs or mutations that decrease
the amplitude of the rapidly activating delayed rectifier K+ current in the heart (IKr). Macroscopic IKr is a direct
function of the number of Kv11.1 channels in the cell surface. This in turn, depends on the balance between
channel insertion, recycling and degradation. About 90% of LQTS-linked missense mutations in KCNH2
decrease Kv11.1 channel number in the cell surface by disrupting channel trafficking. The trafficking for many of
these mutants is increased by culturing cells in drugs that block Kv11.1 current (IKv11.1). We propose the
innovative hypothesis that some of these mutations increase the activity of Kv11.1 channel in early endosomes
(EE), recycling endosomes (RE) and/or the trans-Golgi network (TGN). The increase in channel opening in these
organelles alters the organelle membrane potential (ψ), pH and K+ levels. The changes in the organelle
electrochemical gradients alter the conformational of Kv11.1 channels that prevent their onward trafficking and/or
promote degradation. Drugs that block IKv11.1 prevent mutant channel openings, prevent organelles changes in
ψ, pH and K+ levels, and improve onward trafficking/decrease degradation.
To test this hypothesis, we will develop a method to assay Kv11.1 channel opening in selected, relevant
organelles for membrane insertion, recycling, and degradation. We can already measure ψ in EEs, REs and the
TGN using a DNA-based reporter called Voltair, developed by Krishnan. Now, we will use a DNA-based reporter
for K+ we have recently developed, called pHlicKer, to simultaneously quantitate lumenal pH and [K+] in these
organelles. We will engineer variants of pHlicKer that localize specifically in EEs, REs, or the TGN in live cells.
We will then use Voltair and pHlicKer to explicitly determine how mutant Kv11.1 channels that increase channel
opening in these organelles impacts ψ, lumenal pH and lumenal [K+] levels. We expect that mutations that
increase the opening of Kv11.1 channels will decrease ψ and increase lumenal [K+]. The changes in the
electrochemical gradients in EEs, REs, or the TGN will prevent the onward trafficking/promote the degradation
of Kv11.1 channels to the cell surface. We expect incubating cells expressing mutant Kv11.1 channels in drugs
that block IKv11.1 will prevent the changes in the electrochemical gradients of EEs, REs, and TGN to improve
mutant Kv11.1 channel trafficking increase functional half-life.
The development of the first-generation prototypes to measure electrochemical gradients in organelles
will allow us to quantify how channel dynamics change as they traffic to the plasma membrane. This will be a
critical step to develop new molecules that can selectively target intracellular channels intracellular to impact
their expression and/or degradation. Our research would also lead to the first practical method to map organellar
K+ and potentially accelerate the discovery of new K+ channels and transporters in organelles.
项目摘要
促心律失常性长QT综合征(LQTS)通常由药物或突变引起,
心脏中快速激活延迟整流钾电流的幅度(IKr)。宏观IKr是一个直接的
细胞表面Kv11.1通道数量的函数。这反过来又取决于
信道插入、再循环和降级。KCNH 2中约90%的LQTS连锁错义突变
通过破坏通道运输减少细胞表面的Kv11.1通道数量。对许多人来说,
通过在阻断Kv11.1电流(IKv11.1)的药物中培养细胞来增加这些突变体。我们建议
这些突变中的一些增加了早期内体中Kv11.1通道的活性
(EE)、再循环内体(RE)和/或反式高尔基体网络(TGN)。这些渠道开放的增加
细胞器改变细胞器的膜电位(pH)、pH和K+水平。细胞器的变化
电化学梯度改变Kv11.1通道的构象,阻止其向前运输和/或
促进降解。阻断IKv11.1的药物可防止突变通道开放,防止细胞器变化,
pH值和K+水平,并改善向前运输/减少降解。
为了验证这一假设,我们将开发一种方法来测定Kv11.1通道开放的选择,相关的,
用于膜插入、回收和降解的细胞器。我们已经可以测量EE,RE和
TGN使用一种名为Voltair的基于DNA的记者,由Krishnan开发。现在我们将使用一个基于DNA的报告器
对于K+,我们最近开发了一种称为pHlicKer的方法,可以同时定量这些细胞中的内腔pH和[K+]。
细胞器我们将设计pHlicKer的变体,这些变体特异性地定位于活细胞中的EE、RE或TGN。
然后,我们将使用Voltair和pHlicKer明确确定突变Kv11.1通道如何增加通道
这些细胞器中的开放影响细胞膜、内腔pH和内腔[K+]水平。我们认为,
增加Kv11.1通道的开放,可降低K+浓度,增加[K+]浓度。的变化
EE、RE或TGN中的电化学梯度将阻止向前运输/促进降解
的Kv11.1通道到细胞表面。我们期望在药物中孵育表达突变Kv11.1通道的细胞,
阻断IKv11.1将阻止EE、RE和TGN的电化学梯度的变化,
突变Kv11.1通道运输增加功能半衰期。
第一代细胞器电化学梯度测量样机的研制
将使我们能够量化通道动态在流向质膜时如何变化。这将是一
关键的一步,开发新的分子,可以选择性地靶向细胞内通道细胞内影响
其表达和/或降解。我们的研究也将导致第一个实用的方法来映射细胞器
K+和潜在的加速发现新的K+通道和转运蛋白的细胞器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yamuna Krishnan其他文献
Yamuna Krishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yamuna Krishnan', 18)}}的其他基金
Predoctoral Training Program in Chemistry and Biology
化学与生物学博士前培训项目
- 批准号:
10641675 - 财政年份:2022
- 资助金额:
$ 24.85万 - 项目类别:
Mechanism and function of intracellular sodium-proton exchangers
细胞内钠质子交换器的机制和功能
- 批准号:
10684328 - 财政年份:2022
- 资助金额:
$ 24.85万 - 项目类别:
Mechanism and function of intracellular sodium-proton exchangers
细胞内钠质子交换器的机制和功能
- 批准号:
10501188 - 财政年份:2022
- 资助金额:
$ 24.85万 - 项目类别:
Intracellular Electrophysiology: An electrochemical atlas of organelles
细胞内电生理学:细胞器电化学图谱
- 批准号:
10693891 - 财政年份:2022
- 资助金额:
$ 24.85万 - 项目类别:
Mechanisms that alter Potassium channel trafficking in arrhythmias
改变心律失常中钾通道运输的机制
- 批准号:
10676958 - 财政年份:2022
- 资助金额:
$ 24.85万 - 项目类别:
Mechanism and function of intracellular sodium-proton exchangers
细胞内钠质子交换器的机制和功能
- 批准号:
10797218 - 财政年份:2022
- 资助金额:
$ 24.85万 - 项目类别:
Predoctoral Training Program in Chemistry and Biology
化学与生物学博士前培训项目
- 批准号:
10334217 - 财政年份:2022
- 资助金额:
$ 24.85万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 24.85万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 24.85万 - 项目类别:
Continuing Grant
Alkane transformations through binding to metals
通过与金属结合进行烷烃转化
- 批准号:
DP240103289 - 财政年份:2024
- 资助金额:
$ 24.85万 - 项目类别:
Discovery Projects
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 24.85万 - 项目类别:
Fellowship
Conformations of musk odorants and their binding to human musk receptors
麝香气味剂的构象及其与人类麝香受体的结合
- 批准号:
EP/X039420/1 - 财政年份:2024
- 资助金额:
$ 24.85万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Understanding the Role of Specific Iron-binding Organic Ligands in Governing Iron Biogeochemistry in the Southern Ocean
博士后奖学金:OPP-PRF:了解特定铁结合有机配体在控制南大洋铁生物地球化学中的作用
- 批准号:
2317664 - 财政年份:2024
- 资助金额:
$ 24.85万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 24.85万 - 项目类别:
Standard Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
- 批准号:
2347997 - 财政年份:2024
- 资助金额:
$ 24.85万 - 项目类别:
Standard Grant
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 24.85万 - 项目类别:
Discovery Projects
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 24.85万 - 项目类别:
Research Grant