Intracellular Electrophysiology: An electrochemical atlas of organelles
细胞内电生理学:细胞器电化学图谱
基本信息
- 批准号:10693891
- 负责人:
- 金额:$ 114.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:ApoptosisAtlasesBiological AssayCell physiologyCharacteristicsChemicalsCommunicationCuesCytoplasmDevelopmentDiseaseElectrophysiology (science)Endoplasmic ReticulumEquationFaceHealthHodgkin DiseaseHomeostasisIon TransportIonsLysosomesMapsMembraneModelingMolecularMutationNeurodegenerative DisordersNeuronsOrganellesParkinsonian DisordersPathway interactionsPhysiologyProcessProteinsSignal TransductionSynapsesTissueslipid metabolismpreventprotein protein interactionsealsmall moleculetargeted treatmentvoltage
项目摘要
PROJECT SUMMARY
The long-term objective of this proposal is to build an electrochemical atlas of organelles to guide the
rational manipulation of inter-organelle contacts in the context of neurodegenerative diseases. A new mode of
intracellular communication is emerging at the level of organelles, whereby the membranes of two juxtaposed
organelles are physically connected, via protein-protein interactions on their cytoplasmic faces, referred to as
inter-organelle contacts. Ions and small molecules are actively transferred from one organelle to the other across
these contacts, traversing two sealed membranes. Inter-organelle contacts are vital to cell function, tissue
homeostasis and physiology because they regulate processes ranging from lipid metabolism to apoptosis.
However, we still do not know what signals initiate contact formation or what switches on chemical transport
across contacts, nor can we discriminate between functional and dysfunctional contacts. Hence, although we
know of specific mutations in proteins that disrupt contact, leading to diverse neurodegenerative diseases, we
still do not know how to restore these contacts and treat those diseases.
I posit that the electrochemical states of organelles, alone and in contact, will inform which pathways and
molecules should be targeted to rectify aberrant contacts in disease states. My rationale is that, if we abstract
out the molecular details, inter-organelle contacts resemble neuronal synapses. Even in synapses, ions flow on
cue across two sealed, abutting membranes. Just as ion-transport mechanisms across neuronal membranes
were revealed by Hodgkin and Huxley’s electrochemical model, an analogous model of organelle membranes
will reveal ion flow mechanisms across inter-organelle contacts and which specific flows are impacted in disease.
I propose to build an electrochemical atlas of organelles as a universal reference to study contacts in health and
disease. This atlas will be a compendium of equations comprising electrochemical models of major organelles,
alone and in contact. By enabling us to discriminate normal and aberrant contacts, I envisage the atlas will reveal
common pathways across diseases that can be targeted to restore contacts with impacted ion flows.
The inability to assay ions or voltage in organelles has prevented the development of electrochemical
models of their membranes. Over the last decade, my lab developed a chemical platform to quantify ions and
voltage in organelles. By integrating electrophysiology to this platform, I propose to now map out the
electrochemical characteristics of organelle membranes in isolation and in contact, and make an electrochemical
atlas of organelles. We will apply the atlas to elucidate how Ca2+ flow across aberrant contacts between the
endoplasmic reticulum and the lysosome can be rectified to restore lysosomal Ca2+ in parkinsonism.
Dysregulated lysosomal Ca2+ is a common factor across many neurodegenerative diseases and the value of the
electrochemical atlas is its pioneering ability to reveal common pathways that can be targeted for treatment in a
disease cross-cutting manner.
项目摘要
这项建议的长期目标是建立一个细胞器的电化学图谱,
在神经退行性疾病的背景下合理操纵细胞器间的接触。新模式
细胞内通讯出现在细胞器的水平,从而两个并列的膜
细胞器通过其细胞质表面上的蛋白质-蛋白质相互作用物理连接,称为
细胞器间的联系离子和小分子从一个细胞器主动转移到另一个
这些接触穿过两个密封膜。细胞器间的接触对细胞功能、组织
因为它们调节从脂质代谢到细胞凋亡的过程。
然而,我们仍然不知道是什么信号启动了接触形成,或者是什么开启了化学运输
我们也不能区分功能性和功能性障碍的接触。因此,虽然我们
我们知道蛋白质中的特定突变会破坏接触,导致各种神经退行性疾病,
仍然不知道如何恢复这些接触和治疗这些疾病。
我认为,细胞器的电化学状态,单独和接触,将告知哪些途径和
分子应该被靶向以纠正疾病状态中的异常接触。我的基本原理是,如果我们抽象
除了分子细节,细胞器间的接触类似于神经元突触。即使在突触中,
线索穿过两个密封的、邻接的膜。就像神经细胞膜上的离子传输机制
由Hodgkin和Huxley的电化学模型揭示,
将揭示跨细胞器间接触的离子流机制,以及疾病中哪些特定流受到影响。
我建议建立一个细胞器的电化学图谱,作为研究健康接触的通用参考,
疾病该图谱将是一个方程式的概要,包括主要细胞器的电化学模型,
单独和联系。通过使我们能够区分正常和异常的接触,我设想地图集将揭示
可以有针对性地恢复与受影响的离子流的接触的疾病之间的共同途径。
由于无法测定细胞器中的离子或电压,
它们的细胞膜模型。在过去的十年里,我的实验室开发了一个化学平台来量化离子,
细胞器中的电压通过将电生理学整合到这个平台上,我建议现在绘制出
在隔离和接触的细胞器膜的电化学特性,并作出电化学
细胞器图谱我们将应用该图谱来阐明Ca 2+是如何流过细胞之间的异常接触的。
在帕金森病中,内质网和溶酶体可以被整流以恢复溶酶体Ca 2+。
溶酶体Ca 2+失调是许多神经退行性疾病的共同因素,
电化学图谱是它的开创性能力,揭示了共同的途径,可以针对治疗,
疾病交叉的方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yamuna Krishnan其他文献
Yamuna Krishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yamuna Krishnan', 18)}}的其他基金
Mechanism and function of intracellular sodium-proton exchangers
细胞内钠质子交换器的机制和功能
- 批准号:
10684328 - 财政年份:2022
- 资助金额:
$ 114.8万 - 项目类别:
Predoctoral Training Program in Chemistry and Biology
化学与生物学博士前培训项目
- 批准号:
10641675 - 财政年份:2022
- 资助金额:
$ 114.8万 - 项目类别:
Mechanism and function of intracellular sodium-proton exchangers
细胞内钠质子交换器的机制和功能
- 批准号:
10501188 - 财政年份:2022
- 资助金额:
$ 114.8万 - 项目类别:
Mechanisms that alter Potassium channel trafficking in arrhythmias
改变心律失常中钾通道运输的机制
- 批准号:
10524297 - 财政年份:2022
- 资助金额:
$ 114.8万 - 项目类别:
Mechanisms that alter Potassium channel trafficking in arrhythmias
改变心律失常中钾通道运输的机制
- 批准号:
10676958 - 财政年份:2022
- 资助金额:
$ 114.8万 - 项目类别:
Mechanism and function of intracellular sodium-proton exchangers
细胞内钠质子交换器的机制和功能
- 批准号:
10797218 - 财政年份:2022
- 资助金额:
$ 114.8万 - 项目类别:
Predoctoral Training Program in Chemistry and Biology
化学与生物学博士前培训项目
- 批准号:
10334217 - 财政年份:2022
- 资助金额:
$ 114.8万 - 项目类别:
相似海外基金
BrainMaps - a unified web platform for novel model organism brain atlases
BrainMaps - 新型模型生物脑图谱的统一网络平台
- 批准号:
23KF0076 - 财政年份:2023
- 资助金额:
$ 114.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Sexual dimorphic cell type and connectivity atlases of the aging and AD mouse brains
衰老和 AD 小鼠大脑的性二态性细胞类型和连接图谱
- 批准号:
10740308 - 财政年份:2023
- 资助金额:
$ 114.8万 - 项目类别:
Pre-cancer atlases of cutaneous and hematologic origin (PATCH Center)
皮肤和血液来源的癌前图谱(PATCH 中心)
- 批准号:
10818803 - 财政年份:2023
- 资助金额:
$ 114.8万 - 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
- 批准号:
10743857 - 财政年份:2022
- 资助金额:
$ 114.8万 - 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
- 批准号:
10558629 - 财政年份:2022
- 资助金额:
$ 114.8万 - 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
- 批准号:
10508739 - 财政年份:2022
- 资助金额:
$ 114.8万 - 项目类别:
Atlases and statistical modeling of vascular networks from medical images
医学图像血管网络的图谱和统计建模
- 批准号:
RGPIN-2018-05283 - 财政年份:2022
- 资助金额:
$ 114.8万 - 项目类别:
Discovery Grants Program - Individual
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10570256 - 财政年份:2022
- 资助金额:
$ 114.8万 - 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
- 批准号:
10364874 - 财政年份:2022
- 资助金额:
$ 114.8万 - 项目类别:
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10467697 - 财政年份:2022
- 资助金额:
$ 114.8万 - 项目类别: