Data-driven validation of cognitive RDoC dimensions using deep phenotyping
使用深度表型分析对认知 RDoC 维度进行数据驱动验证
基本信息
- 批准号:10686101
- 负责人:
- 金额:$ 77.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-19 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAnimal ExperimentationAnimalsAtlasesAttentionAutomobile DrivingBehaviorBehavioralBrainBrain imagingCognitiveCollectionComplementConsultationsDataDimensionsDiseaseEducationEquationExperimental DesignsExposure toFactor AnalysisFunctional Magnetic Resonance ImagingFunctional disorderHumanIndividualInformal Social ControlLinkLiteratureLogicMRI ScansMapsMeasurementMeasuresMental HealthMental ProcessesMental disordersMethodsModelingMultivariate AnalysisNational Institute of Mental HealthOutcomePatient Self-ReportPerformancePhenotypePlayPsychopathologyRecording of previous eventsResearchResearch Domain CriteriaResearch PersonnelResearch Project GrantsSamplingScanningSeriesShort-Term MemorySpecific qualifier valueStructural ModelsStructureSupport SystemSurveysSystemTechniquesTestingTrainingValidationbehavior measurementbehavior testbehavioral studycognitive controlcognitive neurosciencecognitive systemcognitive taskexperiencelarge scale datamental setneuralneural circuitneuroimagingpreventprogramspsychologicresponsesubstance use
项目摘要
Project Summary
The NIMH research domain criteria (RDoC) reconceptualizes mental health research along a series of key
cross-disorder dimensional constructs. However, these dimensions were determined in a top-down fashion by
relatively small groups of researchers. We propose a data-driven approach that tests the validity of the key RDoC
constructs of attention, cognitive control, and working memory. We will evaluate these constructs using multiple
cognitive tasks per construct to examine their relationship to brain networks and their ability to predict real-world
behaviors that are relevant to mental health. Finally, we propose an augmentation to the RDoC framework by
adding new units of analysis: contrasts and practice.
The current RDoC matrix maps directly from task paradigms to constructs and subconstructs, which is
problematic because supposedly distinct constructs can sometimes map to exactly the same set of tasks. To
address this, we propose a new RDoC unit of analysis called a “contrast”, which better reflects the usual logic of
experimental design. We will identify mappings between cognitive systems constructs and contrasts through
consultation with domain experts. We will then acquire a large-scale dataset to test both exploratory and
confirmatory models for RDoC cognitive system constructs. Finally, we will evaluate whether these RDoC
cognitive systems constructs are predictive of related real-world outcomes.
The RDoC matrix links constructs to both behavioral measures and neural circuits, but the present mappings
between cognitive systems constructs and brain systems are sparse and inconsistent. We will use a dense-
sampling fMRI acquisition of 65 subjects each completing 10 scanning sessions on the same battery of tasks as
the behavioral study, to develop a precise data-driven atlas of neural engagement at each level of the matrix,
from contrasts to subconstructs to constructs. We will then validate the behaviorally-derived models using neural
data, both between subjects and within subjects. We will also perform fully exploratory analyses to identify
whether the data-driven neural circuit structure on these tasks diverges from the RDoC matrix.
A long history of research in both and animals has shown that repeated practice on a task changes the way
that the task is performed and the brain systems that support performance. We will leverage our behavioral and
brain imaging samples to evaluate whether the structure of the cognitive systems domain remains constant with
practice. In parallel we will also apply exploratory methods to assess the consistency of structural models
estimated either early in training or after extensive practice.
Overall, this project expands the RDoC matrix with two new units of analysis (contrasts and practice), and
validates the constructs of attention, cognitive control, and working memory across both behavior and neural
circuits.
项目概要
NIMH 研究领域标准 (RDoC) 根据一系列关键标准重新概念化了心理健康研究
跨无序维度结构。然而,这些尺寸是通过自上而下的方式确定的
相对较小的研究人员群体。我们提出了一种数据驱动的方法来测试关键 RDoC 的有效性
注意力、认知控制和工作记忆的结构。我们将使用多个评估这些结构
每个结构的认知任务,以检查它们与大脑网络的关系以及它们预测现实世界的能力
与心理健康相关的行为。最后,我们提出对 RDoC 框架的增强:
添加新的分析单元:对比和实践。
当前的 RDoC 矩阵直接从任务范式映射到构造和子构造,即
这是有问题的,因为所谓的不同构造有时可以映射到完全相同的一组任务。到
为了解决这个问题,我们提出了一个新的 RDoC 分析单元,称为“对比”,它更好地反映了通常的逻辑
实验设计。我们将通过以下方式识别认知系统构造和对比之间的映射:
与领域专家协商。然后,我们将获取一个大规模数据集来测试探索性和
RDoC 认知系统构造的验证模型。最后,我们将评估这些 RDoC 是否
认知系统构造可以预测相关的现实世界结果。
RDoC 矩阵将构造链接到行为测量和神经回路,但目前的映射
认知系统结构和大脑系统之间的关系是稀疏且不一致的。我们将使用密集的
对 65 名受试者进行 fMRI 采集采样,每名受试者完成 10 次扫描任务,并完成与
行为研究,开发一个精确的数据驱动的矩阵每个级别的神经参与图谱,
从对比到子构造再到构造。然后,我们将使用神经网络验证行为衍生模型
受试者之间和受试者内部的数据。我们还将进行全面的探索性分析,以确定
这些任务的数据驱动神经回路结构是否偏离 RDoC 矩阵。
对动物和动物的长期研究表明,对一项任务的重复练习会改变方法
任务的执行以及支持执行的大脑系统。我们将利用我们的行为和
脑成像样本来评估认知系统域的结构是否保持不变
实践。与此同时,我们还将应用探索性方法来评估结构模型的一致性
在训练初期或广泛练习后估计。
总体而言,该项目通过两个新的分析单元(对比和实践)扩展了 RDoC 矩阵,以及
跨行为和神经验证注意力、认知控制和工作记忆的结构
电路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell A Poldrack其他文献
Making big data open: data sharing in neuroimaging
开放大数据:神经影像学中的数据共享
- DOI:
10.1038/nn.3818 - 发表时间:
2014-10-28 - 期刊:
- 影响因子:20.000
- 作者:
Russell A Poldrack;Krzysztof J Gorgolewski - 通讯作者:
Krzysztof J Gorgolewski
The young and the reckless
年轻而鲁莽的人
- DOI:
10.1038/nn.3116 - 发表时间:
2012-05-25 - 期刊:
- 影响因子:20.000
- 作者:
Sarah M Helfinstein;Russell A Poldrack - 通讯作者:
Russell A Poldrack
Russell A Poldrack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell A Poldrack', 18)}}的其他基金
Data-driven validation of cognitive RDoC dimensions using deep phenotyping
使用深度表型分析对认知 RDoC 维度进行数据驱动验证
- 批准号:
10515980 - 财政年份:2022
- 资助金额:
$ 77.41万 - 项目类别:
NIPreps: integrating neuroimaging preprocessing workflows across modalities, populations, and species
NIPreps:整合跨模式、人群和物种的神经影像预处理工作流程
- 批准号:
10513258 - 财政年份:2021
- 资助金额:
$ 77.41万 - 项目类别:
Characterizing cognitive control networks using a precision neuroscience approach
使用精确神经科学方法表征认知控制网络
- 批准号:
9906911 - 财政年份:2018
- 资助金额:
$ 77.41万 - 项目类别:
OpenNeuro: An open archive for analysis and sharing of BRAIN Initiative data
OpenNeuro:用于分析和共享 BRAIN Initiative 数据的开放档案
- 批准号:
10417031 - 财政年份:2018
- 资助金额:
$ 77.41万 - 项目类别:
OpenNeuro: An open archive for analysis and sharing of BRAIN Initiative data
OpenNeuro:用于分析和共享 BRAIN Initiative 数据的开放档案
- 批准号:
10365039 - 财政年份:2018
- 资助金额:
$ 77.41万 - 项目类别:
OpenNeuro: An open archive for analysis and sharing of BRAIN Initiative data
OpenNeuro:用于分析和共享 BRAIN Initiative 数据的开放档案
- 批准号:
10451257 - 财政年份:2018
- 资助金额:
$ 77.41万 - 项目类别:
Characterizing cognitive control networks using a precision neuroscience approach
使用精确神经科学方法表征认知控制网络
- 批准号:
10398085 - 财政年份:2018
- 资助金额:
$ 77.41万 - 项目类别:
BIDS-Derivatives: A data standard for derived data and models in the BRAIN Initiative
BIDS-Derivatives:BRAIN Initiative 中派生数据和模型的数据标准
- 批准号:
9411944 - 财政年份:2017
- 资助金额:
$ 77.41万 - 项目类别:
The development of neural responses to punishment in adolescence
青春期对惩罚的神经反应的发展
- 批准号:
8662735 - 财政年份:2013
- 资助金额:
$ 77.41万 - 项目类别:
The development of neural responses to punishment in adolescence
青春期对惩罚的神经反应的发展
- 批准号:
8507396 - 财政年份:2013
- 资助金额:
$ 77.41万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 77.41万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 77.41万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 77.41万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 77.41万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 77.41万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 77.41万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 77.41万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 77.41万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 77.41万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 77.41万 - 项目类别:
Research Grant














{{item.name}}会员




