Characterizing cognitive control networks using a precision neuroscience approach
使用精确神经科学方法表征认知控制网络
基本信息
- 批准号:9906911
- 负责人:
- 金额:$ 45.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AttentionBehaviorBehavioralBehavioral trialBrainConflict (Psychology)DataData SetDiseaseEngineeringFailureFunctional Magnetic Resonance ImagingHead MovementsHourImpairmentIndividualJointsLinkMental HealthMental disordersMethodologyMonitorNeurosciencesPatientsPerformancePharmaceutical PreparationsPrecision Medicine InitiativePreparationProceduresProcessReproducibilityResearch PersonnelRestSample SizeScanningShort-Term MemorySourceStructureTask PerformancesTimeUnited States National Institutes of HealthWidthWorkbasecognitive controlcognitive systemcomorbidityexperienceflexibilityfunctional MRI scanimprovednetwork architecturenetwork attackneural networkneuroimagingnovelopen data
项目摘要
Impairments in cognitive control are central to many mental health disorders (McTeague et al., 2017). In
parallel, there is mounting evidence from a range of neuroimaging studies implicating impairments of network
computations in disorders of mental health (Fornito et al., 2015). A crucial ‘missing piece’ bridging these two
aspects of brain function is a relatively poor understanding of the way in which the network-level computations
of the brain relate to cognitive control processes, and the precise ways in which these relationships fluctuate
and unfold over weeks and months in each individual.
Before we can understand fluctuations in the trajectories of mental illnesses, we need to first understand the
temporal variability of healthy individuals over time. “Recent ‘dense-scanning’ datasets that acquire
substantially more data per subject provide a potential solution to this challenge, but these studies have lacked
width (they include few subjects, e.g., 4-10) and breadth (they focus on individual tasks/states, often the
‘resting state’). We will overcome these shortcoming with a dataset scanning 55 subjects each for a total 12
hours over the course of 6 months on 8 unique tasks that span multiple constructs of cognitive control
(working memory, attention, set shifting, inhibition, and performance monitoring). The resultant dataset will
be wide (i.e. multiple subjects per task), broad (e.g. multiple tasks per construct) and deep (e.g. multiple
repetitions of each task over time). This precision neuroscience approach allows us to identify global and local
changes in neural networks that are necessary both (a) in preparation for fast, effective controlled performance,
and (b) to support flexible post-error and post-conflict control adjustments to improve subsequent
performance. Once we have identified these behavioral and neural network signatures of cognitive control that
are reproducible across task, construct, session, we will leverage this information in a novel ‘targeted network
attack’ procedure to engineer breakdowns in the network architecture by precision challenges to the cognitive
system. Tailored combinations of tasks that rely on overlapping network architectures will be combined to
identify specific network features that are ripe for failure in healthy subjects, and as such, represent likely
nodes for subsequent failure in disease.
Together, this work will uncover novel links between cognitive control and functional brain network
architecture across tasks, constructs, and sessions (Aim 1) that are essential for effective and flexible behavior
(Aim 2) and are likely to fail across diverse disease states (Aim 3). Our precision neuroscience approach relates
closely to the precision medicine initiative at the NIH, as our deep-scanning procedure allows us to identify
subject-level network features necessary for effective cognitive control. In addition, by making the data openly
accessible to other researchers, we expect these data sets will become an incomparably rich source of
information for those studying the essential link between cognitive control and network-level computations.
认知控制障碍是许多精神健康障碍的核心(McTeague等人,2017年)。在……里面
与此同时,来自一系列神经成像研究的越来越多的证据表明,网络损伤
精神健康障碍的计算(Fornito等人,2015年)。连接这两个人的一个关键的“缺失的部分”
大脑功能方面是对网络级计算方式的相对较差的理解
大脑与认知控制过程有关,以及这些关系波动的确切方式
并在每个个体身上展开数周和数月的过程。
在我们能够理解精神疾病轨迹的波动之前,我们需要首先了解
健康个体随时间的时间变异性。“最近的‘密集扫描’数据集
每个受试者更多的数据为这一挑战提供了潜在的解决方案,但这些研究一直缺乏
宽度(它们包括很少的主题,例如,4-10)和宽度(它们侧重于单个任务/状态,通常是
“休眠状态”)。我们将用一个数据集来克服这些缺点,每个数据集扫描55个对象,总共12个
在6个月的时间里完成8项独特的任务,这些任务跨越了认知控制的多种结构
(工作记忆、注意力、定势转移、抑制和性能监控)。生成的数据集将
广度(即每个任务有多个主题)、广度(例如每个构思有多个任务)和深度(例如多个
每项任务随时间的重复)。这种精确的神经科学方法使我们能够识别全球和局部
神经网络的改变是必要的:(A)为快速、有效的受控性能做准备,
和(B)支持灵活的错误后和冲突后控制调整,以改善后续工作
性能。一旦我们确定了这些认知控制的行为和神经网络特征
是跨任务、构造、会话可重现的,我们将在一个新颖的目标网络中利用这些信息
通过对认知的精确性挑战来设计网络架构故障的攻击程序
系统。依赖重叠网络体系结构的定制任务组合将组合在一起,以
确定在健康受试者中出现故障的特定网络功能,并因此表示可能
节点,为疾病的后续失效做准备。
总而言之,这项工作将揭示认知控制和大脑功能网络之间的新联系
跨任务、构造和会话的体系结构(目标1),这对于有效和灵活的行为至关重要
(目标2),而且很可能在不同的疾病状态下失败(目标3)。我们的精确神经科学方法与
与NIH的精准医学计划密切相关,因为我们的深度扫描程序允许我们识别
受试者级别的网络功能是有效认知控制所必需的。此外,通过将数据公开
对于其他研究人员来说,我们预计这些数据集将成为无比丰富的
为那些研究认知控制和网络级计算之间的基本联系的人提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell A Poldrack其他文献
Making big data open: data sharing in neuroimaging
开放大数据:神经影像学中的数据共享
- DOI:
10.1038/nn.3818 - 发表时间:
2014-10-28 - 期刊:
- 影响因子:20.000
- 作者:
Russell A Poldrack;Krzysztof J Gorgolewski - 通讯作者:
Krzysztof J Gorgolewski
The young and the reckless
年轻而鲁莽的人
- DOI:
10.1038/nn.3116 - 发表时间:
2012-05-25 - 期刊:
- 影响因子:20.000
- 作者:
Sarah M Helfinstein;Russell A Poldrack - 通讯作者:
Russell A Poldrack
Russell A Poldrack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell A Poldrack', 18)}}的其他基金
Data-driven validation of cognitive RDoC dimensions using deep phenotyping
使用深度表型分析对认知 RDoC 维度进行数据驱动验证
- 批准号:
10686101 - 财政年份:2022
- 资助金额:
$ 45.64万 - 项目类别:
Data-driven validation of cognitive RDoC dimensions using deep phenotyping
使用深度表型分析对认知 RDoC 维度进行数据驱动验证
- 批准号:
10515980 - 财政年份:2022
- 资助金额:
$ 45.64万 - 项目类别:
NIPreps: integrating neuroimaging preprocessing workflows across modalities, populations, and species
NIPreps:整合跨模式、人群和物种的神经影像预处理工作流程
- 批准号:
10513258 - 财政年份:2021
- 资助金额:
$ 45.64万 - 项目类别:
OpenNeuro: An open archive for analysis and sharing of BRAIN Initiative data
OpenNeuro:用于分析和共享 BRAIN Initiative 数据的开放档案
- 批准号:
10365039 - 财政年份:2018
- 资助金额:
$ 45.64万 - 项目类别:
OpenNeuro: An open archive for analysis and sharing of BRAIN Initiative data
OpenNeuro:用于分析和共享 BRAIN Initiative 数据的开放档案
- 批准号:
10417031 - 财政年份:2018
- 资助金额:
$ 45.64万 - 项目类别:
OpenNeuro: An open archive for analysis and sharing of BRAIN Initiative data
OpenNeuro:用于分析和共享 BRAIN Initiative 数据的开放档案
- 批准号:
10451257 - 财政年份:2018
- 资助金额:
$ 45.64万 - 项目类别:
Characterizing cognitive control networks using a precision neuroscience approach
使用精确神经科学方法表征认知控制网络
- 批准号:
10398085 - 财政年份:2018
- 资助金额:
$ 45.64万 - 项目类别:
BIDS-Derivatives: A data standard for derived data and models in the BRAIN Initiative
BIDS-Derivatives:BRAIN Initiative 中派生数据和模型的数据标准
- 批准号:
9411944 - 财政年份:2017
- 资助金额:
$ 45.64万 - 项目类别:
The development of neural responses to punishment in adolescence
青春期对惩罚的神经反应的发展
- 批准号:
8662735 - 财政年份:2013
- 资助金额:
$ 45.64万 - 项目类别:
The development of neural responses to punishment in adolescence
青春期对惩罚的神经反应的发展
- 批准号:
8699087 - 财政年份:2013
- 资助金额:
$ 45.64万 - 项目类别:
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Systematization of Cognitive Behavioral Therapy based on the influence of rule-governed behavior in frequent stealing behavior
基于规则行为对频繁偷盗行为的影响的认知行为治疗的系统化
- 批准号:
23K18975 - 财政年份:2023
- 资助金额:
$ 45.64万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Organizational Behavior Management in Various Welfare Facilities Starting with Behavioral Records
各类福利机构的组织行为管理从行为记录入手
- 批准号:
23K17566 - 财政年份:2023
- 资助金额:
$ 45.64万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
An Empirical Study on a Behavioral Model for Invoking the Potential Demand of Micro-Tourism through the Provision of Behavior Change Triggers
通过提供行为改变触发因素激发微旅游潜在需求的行为模型实证研究
- 批准号:
23K11632 - 财政年份:2023
- 资助金额:
$ 45.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of behavior modification approach using cognitive behavioral therapy for patients with higher brain dysfunction
使用认知行为疗法开发针对重度脑功能障碍患者的行为矫正方法
- 批准号:
23K02986 - 财政年份:2023
- 资助金额:
$ 45.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combined Dialectical Behavior Therapy and Digital Cognitive Behavioral Therapy for Insomnia for Adolescents at High Risk for Suicide: A Pilot RCT
辩证行为疗法和数字认知行为疗法相结合治疗自杀高危青少年的失眠:一项试点随机对照试验
- 批准号:
10643478 - 财政年份:2023
- 资助金额:
$ 45.64万 - 项目类别:
The Effects of Scholarship on Student's Learning Behavior Focusing on PreferenceDevelopments and Expansions of Behavioral Economics Approach
奖学金对学生学习行为的影响关注偏好行为经济学方法的发展和扩展
- 批准号:
22K13722 - 财政年份:2022
- 资助金额:
$ 45.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Multisensory integration at the cell, circuit, and behavioral levels: How audiovisual signals drive dynamic courtship behavior in Drosophila melanogaster
细胞、回路和行为层面的多感觉整合:视听信号如何驱动果蝇的动态求偶行为
- 批准号:
10389197 - 财政年份:2022
- 资助金额:
$ 45.64万 - 项目类别:
Multisensory integration at the cell, circuit, and behavioral levels: How audiovisual signals drive dynamic courtship behavior in Drosophila melanogaster
细胞、回路和行为层面的多感觉整合:视听信号如何驱动果蝇的动态求偶行为
- 批准号:
10828249 - 财政年份:2022
- 资助金额:
$ 45.64万 - 项目类别:
Quantifying Behavioral Factors Related to Sedentary Behavior of Disabled Elderly
量化与残疾老年人久坐行为相关的行为因素
- 批准号:
22K21213 - 财政年份:2022
- 资助金额:
$ 45.64万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Construction of tsunami evacuation behavior database containing geographic characteristics and behavioral contexts and utilization of it for promoting residents' behavior to prepare for evacuation
构建包含地理特征和行为背景的海啸疏散行为数据库,并利用它来促进居民做好疏散准备的行为
- 批准号:
22K04641 - 财政年份:2022
- 资助金额:
$ 45.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)