OpenNeuro: An open archive for analysis and sharing of BRAIN Initiative data
OpenNeuro:用于分析和共享 BRAIN Initiative 数据的开放档案
基本信息
- 批准号:10451257
- 负责人:
- 金额:$ 162.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAgreementArchitectureArchivesBRAIN initiativeBrainBrain imagingClientCollaborationsComputer softwareCustomDataData SetDatabasesDedicationsDevelopmentElectroencephalographyElectromagneticsEnsureFAIR principlesFundingFunding AgencyGoalsGrantGrowthHealthHumanInformaticsInvestmentsLicensingLinkMagnetic Resonance ImagingManualsMeasuresMetadataModalityNeurosciencesNeurosciences ResearchOntologyPerformancePoliciesPositron-Emission TomographyProcessPublic DomainsQuality ControlReportingReproducibilityRequest for ProposalsResearchResearch PersonnelRetrievalSideSiteSpecific qualifier valueStandardizationStatistical ModelsSystemTestingUnited States National Institutes of HealthWorkdata archivedata integrationdata managementdata modelingdata reusedata sharingdata structuredigital object identifierdistributed archivesflexibilityhuman subjectimprovedneuroimagingneurophysiologyopen datapermissivenessprogramsrepositorysharing platformsoftware developmentsuccessusabilityweb site
项目摘要
Project Summary/Abstract
The BRAIN Initiative is supporting a broad portfolio of neuroscience research aimed at revolutionizing our
understanding of the brain. The sharing of data obtained from this research is critical both to leveraging this
major public investment and to ensuring the rigor and reproducibility of NIH-funded research. We propose a
renewal of support for the OpenNeuro data archive, which provides a platform for the storage, processing, and
sharing of neuroimaging data collected as part of the BRAIN Initiative. OpenNeuro enables researchers to easily
share a broad range of neuroscience data types, based on the Brain Imaging Data Structure standard for
organizing datasets. The platform shares data openly and provides researchers with several avenues to access
and reuse the data. In the renewal period we propose to continue supporting a high level of performance for the
archive, and to extend the work done in the initial grant period. First, we will provide a specialized portal for
BRAIN Initiative investigators, which will help more clearly link their research to funding sources, and to provide
them with the ability to more flexibly select an appropriate data use agreement. We will also implement enhanced
user profiles, linking shared datasets to standard researcher identities through the ORCID system. Second, we
will enhance the ability to search for datasets by improving the ability for researchers to specify metadata that is
linked to standard ontologies. Third, will improve the reusability of OpenNeuro datasets by providing support for
the sharing of derivative data as well as statistical models, and by providing preprocessed data and quality
control reports. Together, these improvements will sustain the success of the OpenNeuro archive and provide
neuroscientists with increasingly usable data to address fundamental problems of brain function and health.
项目摘要/摘要
大脑计划正在支持广泛的神经科学研究组合,旨在彻底改变我们的
对大脑的理解。共享从这项研究中获得的数据对于利用这一点是至关重要的
主要的公共投资,并确保国家卫生研究院资助的研究的严密性和重复性。我们提出了一个
续订对OpenNeuro数据归档的支持,该归档为存储、处理和
共享作为大脑倡议的一部分收集的神经成像数据。OpenNeuro使研究人员能够轻松地
共享广泛的神经科学数据类型,基于的大脑成像数据结构标准
组织数据集。该平台公开共享数据,并为研究人员提供了多种访问途径
并重复使用这些数据。在续订期间,我们建议继续支持高水平的
此外,还要求建立一个档案库,并延长在最初批给期内完成的工作。首先,我们将为以下内容提供专门的门户
Brain Initiative调查人员,这将有助于更清楚地将他们的研究与资金来源联系起来,并提供
他们有能力更灵活地选择适当的数据使用协议。我们还将实施增强的
用户配置文件,通过ORCID系统将共享数据集与标准研究人员身份联系起来。第二,我们
将通过提高研究人员指定以下元数据的能力来增强搜索数据集的能力
链接到标准本体论。第三,将通过提供以下支持来提高OpenNeuro数据集的可重用性
分享衍生数据和统计模型,并通过提供经过预处理的数据和质量
控制报告。总之,这些改进将维持OpenNeuro档案的成功,并提供
神经科学家提供越来越有用的数据,以解决大脑功能和健康的根本问题。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PET-BIDS, an extension to the brain imaging data structure for positron emission tomography.
- DOI:10.1038/s41597-022-01164-1
- 发表时间:2022-03-02
- 期刊:
- 影响因子:9.8
- 作者:Norgaard M;Matheson GJ;Hansen HD;Thomas A;Searle G;Rizzo G;Veronese M;Giacomel A;Yaqub M;Tonietto M;Funck T;Gillman A;Boniface H;Routier A;Dalenberg JR;Betthauser T;Feingold F;Markiewicz CJ;Gorgolewski KJ;Blair RW;Appelhoff S;Gau R;Salo T;Niso G;Pernet C;Phillips C;Oostenveld R;Gallezot JD;Carson RE;Knudsen GM;Innis RB;Ganz M
- 通讯作者:Ganz M
A comparison of neuroelectrophysiology databases.
- DOI:10.1038/s41597-023-02614-0
- 发表时间:2023-10-19
- 期刊:
- 影响因子:9.8
- 作者:Subash P;Gray A;Boswell M;Cohen SL;Garner R;Salehi S;Fisher C;Hobel S;Ghosh S;Halchenko Y;Dichter B;Poldrack RA;Markiewicz C;Hermes D;Delorme A;Makeig S;Behan B;Sparks A;Arnott SR;Wang Z;Magnotti J;Beauchamp MS;Pouratian N;Toga AW;Duncan D
- 通讯作者:Duncan D
Benchmarking explanation methods for mental state decoding with deep learning models.
- DOI:10.1016/j.neuroimage.2023.120109
- 发表时间:2023-06
- 期刊:
- 影响因子:5.7
- 作者:Thomas, Armin W.;Re, Christopher;Poldrack, Russell A.
- 通讯作者:Poldrack, Russell A.
The Past, Present, and Future of the Brain Imaging Data Structure (BIDS)
- DOI:10.1162/imag_a_00103
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:R. Poldrack;Christopher J. Markiewicz;S. Appelhoff;Yoni K. Ashar;Tibor Auer;Sylvain Baillet;Shashank Bansal;Leandro Beltrachini;C. Bénar;G. Bertazzoli;Suyash Bhogawar;Ross W. Blair;M. Bortoletto;M. Boudreau;Teon L Brooks;V. Calhoun;F. Castelli;Patricia Clement;Alexander L Cohen;J. Cohen-Adad;Sasha D'Ambrosio;G. Hollander;M. D. L. iglesia-Vay'a;A. D. L. Vega;Arnaud Delorme;O. Devinsky;Dejan Draschkow;E. Duff;E. Dupre;Eric Earl;Oscar Esteban;Franklin W. Feingold;G. Flandin;Anthony Galassi;Giuseppe Gallitto;M. Ganz;Rémi Gau;J. Gholam;Sulagna Dia Ghosh;A. Giacomel;A. Gillman;P. Gleeson;Alexandre Gramfort;Samuel Guay;G. Guidali;Y. Halchenko;D. Handwerker;Nell Hardcastle;P. Herholz;Dora Hermes;C. Honey;R. Innis;Horea-Ioan Ioanas;Andrew Jahn;A. Karakuzu;D. Keator;Gregory Kiar;Bálint Kincses;A. Laird;Jonathan C. Lau;A. Lazari;Jon Haitz Legarreta;Adam Li;Xiangrui Li;B. Love;Hanzhang Lu;Camille Maumet;G. Mazzamuto;S. Meisler;Mark Mikkelsen;Henk‐Jan Mutsaerts;Thomas E. Nichols;A. Nikolaidis;G. Nilsonne;Guiomar Niso;M. Nørgaard;T. Okell;R. Oostenveld;Eduard Ort;Patrick J. Park;Mateusz Pawlik;C. Pernet;F. Pestilli;Jan Petr;Christophe Phillips;J B Poline;L. Pollonini;P. Raamana;Petra Ritter;Gaia Rizzo;Kay A. Robbins;A. Rockhill;Christine Rogers;A. Rokem;C. Rorden;A. Routier;J. M. Saborit-Torres;T. Salo;M. Schirner;Robert E. Smith;T. Spisák;Julia Sprenger;Nicole C. Swann;Martin Szinte;S. Takerkart;Bertrand Thirion;Adam G. Thomas;Sajjad Torabian;G. Varoquaux;Bradley Voytek;Julius Welzel;Martin Wilson;Tal Yarkoni;Krzysztof J. Gorgolewski
- 通讯作者:R. Poldrack;Christopher J. Markiewicz;S. Appelhoff;Yoni K. Ashar;Tibor Auer;Sylvain Baillet;Shashank Bansal;Leandro Beltrachini;C. Bénar;G. Bertazzoli;Suyash Bhogawar;Ross W. Blair;M. Bortoletto;M. Boudreau;Teon L Brooks;V. Calhoun;F. Castelli;Patricia Clement;Alexander L Cohen;J. Cohen-Adad;Sasha D'Ambrosio;G. Hollander;M. D. L. iglesia-Vay'a;A. D. L. Vega;Arnaud Delorme;O. Devinsky;Dejan Draschkow;E. Duff;E. Dupre;Eric Earl;Oscar Esteban;Franklin W. Feingold;G. Flandin;Anthony Galassi;Giuseppe Gallitto;M. Ganz;Rémi Gau;J. Gholam;Sulagna Dia Ghosh;A. Giacomel;A. Gillman;P. Gleeson;Alexandre Gramfort;Samuel Guay;G. Guidali;Y. Halchenko;D. Handwerker;Nell Hardcastle;P. Herholz;Dora Hermes;C. Honey;R. Innis;Horea-Ioan Ioanas;Andrew Jahn;A. Karakuzu;D. Keator;Gregory Kiar;Bálint Kincses;A. Laird;Jonathan C. Lau;A. Lazari;Jon Haitz Legarreta;Adam Li;Xiangrui Li;B. Love;Hanzhang Lu;Camille Maumet;G. Mazzamuto;S. Meisler;Mark Mikkelsen;Henk‐Jan Mutsaerts;Thomas E. Nichols;A. Nikolaidis;G. Nilsonne;Guiomar Niso;M. Nørgaard;T. Okell;R. Oostenveld;Eduard Ort;Patrick J. Park;Mateusz Pawlik;C. Pernet;F. Pestilli;Jan Petr;Christophe Phillips;J B Poline;L. Pollonini;P. Raamana;Petra Ritter;Gaia Rizzo;Kay A. Robbins;A. Rockhill;Christine Rogers;A. Rokem;C. Rorden;A. Routier;J. M. Saborit-Torres;T. Salo;M. Schirner;Robert E. Smith;T. Spisák;Julia Sprenger;Nicole C. Swann;Martin Szinte;S. Takerkart;Bertrand Thirion;Adam G. Thomas;Sajjad Torabian;G. Varoquaux;Bradley Voytek;Julius Welzel;Martin Wilson;Tal Yarkoni;Krzysztof J. Gorgolewski
A data resource from concurrent intracranial stimulation and functional MRI of the human brain.
来自并发颅内刺激和人脑功能 MRI 的数据资源。
- DOI:10.1038/s41597-020-00595-y
- 发表时间:2020
- 期刊:
- 影响因子:9.8
- 作者:Thompson,WH;Nair,R;Oya,H;Esteban,O;Shine,JM;Petkov,CI;Poldrack,RA;Howard,M;Adolphs,R
- 通讯作者:Adolphs,R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell A Poldrack其他文献
Making big data open: data sharing in neuroimaging
开放大数据:神经影像学中的数据共享
- DOI:
10.1038/nn.3818 - 发表时间:
2014-10-28 - 期刊:
- 影响因子:20.000
- 作者:
Russell A Poldrack;Krzysztof J Gorgolewski - 通讯作者:
Krzysztof J Gorgolewski
The young and the reckless
年轻而鲁莽的人
- DOI:
10.1038/nn.3116 - 发表时间:
2012-05-25 - 期刊:
- 影响因子:20.000
- 作者:
Sarah M Helfinstein;Russell A Poldrack - 通讯作者:
Russell A Poldrack
Russell A Poldrack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell A Poldrack', 18)}}的其他基金
Data-driven validation of cognitive RDoC dimensions using deep phenotyping
使用深度表型分析对认知 RDoC 维度进行数据驱动验证
- 批准号:
10686101 - 财政年份:2022
- 资助金额:
$ 162.99万 - 项目类别:
Data-driven validation of cognitive RDoC dimensions using deep phenotyping
使用深度表型分析对认知 RDoC 维度进行数据驱动验证
- 批准号:
10515980 - 财政年份:2022
- 资助金额:
$ 162.99万 - 项目类别:
NIPreps: integrating neuroimaging preprocessing workflows across modalities, populations, and species
NIPreps:整合跨模式、人群和物种的神经影像预处理工作流程
- 批准号:
10513258 - 财政年份:2021
- 资助金额:
$ 162.99万 - 项目类别:
Characterizing cognitive control networks using a precision neuroscience approach
使用精确神经科学方法表征认知控制网络
- 批准号:
9906911 - 财政年份:2018
- 资助金额:
$ 162.99万 - 项目类别:
OpenNeuro: An open archive for analysis and sharing of BRAIN Initiative data
OpenNeuro:用于分析和共享 BRAIN Initiative 数据的开放档案
- 批准号:
10365039 - 财政年份:2018
- 资助金额:
$ 162.99万 - 项目类别:
OpenNeuro: An open archive for analysis and sharing of BRAIN Initiative data
OpenNeuro:用于分析和共享 BRAIN Initiative 数据的开放档案
- 批准号:
10417031 - 财政年份:2018
- 资助金额:
$ 162.99万 - 项目类别:
Characterizing cognitive control networks using a precision neuroscience approach
使用精确神经科学方法表征认知控制网络
- 批准号:
10398085 - 财政年份:2018
- 资助金额:
$ 162.99万 - 项目类别:
BIDS-Derivatives: A data standard for derived data and models in the BRAIN Initiative
BIDS-Derivatives:BRAIN Initiative 中派生数据和模型的数据标准
- 批准号:
9411944 - 财政年份:2017
- 资助金额:
$ 162.99万 - 项目类别:
The development of neural responses to punishment in adolescence
青春期对惩罚的神经反应的发展
- 批准号:
8662735 - 财政年份:2013
- 资助金额:
$ 162.99万 - 项目类别:
The development of neural responses to punishment in adolescence
青春期对惩罚的神经反应的发展
- 批准号:
8699087 - 财政年份:2013
- 资助金额:
$ 162.99万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 162.99万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 162.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 162.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 162.99万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 162.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 162.99万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 162.99万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 162.99万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 162.99万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 162.99万 - 项目类别:
Standard Grant