Acquisition of Colaborative Robot System for Ultrasound Research
采购用于超声研究的协作机器人系统
基本信息
- 批准号:10798904
- 负责人:
- 金额:$ 6.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-05 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D ultrasoundAddressAgreementAmericanApolipoprotein EArterial Fatty StreakBiologicalBlood VesselsBreast MicrocalcificationCessation of lifeCoronary VesselsDetectionDevelopmentEnvironmentFrequenciesFundingFutureHumanHypertensionImageImage EnhancementInflammationIntrinsic factorLogicMechanical StressMechanicsMorphologic artifactsMorphologyMotionMusMyocardial InfarctionNecrosisNoisePatientsPlayPositioning AttributeResearchResearch PersonnelResearch Project GrantsResolutionRiskRisk ReductionRobotRoboticsRoleRotationRuptureSamplingScanningSignal TransductionSiteStressSudden DeathSystemTestingThickThree-Dimensional ImagingThrombusTissue SampleTissuesTranslatingUltrasonographyUnited States National Institutes of HealthVascular calcificationacute coronary syndromearmcalcificationcontrast enhancedcoronary artery calcificationhigh resolution imaginghuman imaginghuman subjecthuman tissueimaging approachimaging systemimprovedin vivoin vivo imagingmeterrobotic systemsensortissue stresstomographytransmission processultrasound
项目摘要
SUMMARY
Human fibroatheroma (FA) cap rupture leads to the formation of an occluding thrombus, myocardial infarction
(MI) and sudden death in more than half a million Americans every year. A major determinant of plaque rupture
risk is the atheroma cap thickness. However, there are several other factors that play an important role in the FA
cap rupture, including atheroma morphology, biological environment, tissue composition and mechanical
environment. Indeed, the underlying mechanisms for atheroma cap rupture are still insufficiently understood.
Vascular calcification has emerged in recent years among the factors that play an important role in the
stability of plaque rupture. We have demonstrated to date the existence of thousands of microcalcifications
(µCalcs) primarily in non-ruptured human atheroma caps using µCT imaging, and that they behave as an
intensifier of the background circumferential stress in the cap. In our currently funded NIH project
1R16GM145474-01 “Microcalcifications in Atherosclerotic Plaque”, the working hypothesis is that μCalcs in the
FA cap has a major effect on the FA cap rupture threshold. Unfortunately, µCT imaging cannot be used for in
vivo assessment of µCalcs in human subjects. Vascular and intravascular ultrasound, on the other hand, are
non-ionizing approaches routinely used for the imaging of atheroma.
Despite significant progress on intra/vascular imaging of atheroma using ultrasound, the presence of large
calcifications in the atheroma produce shadowing artifacts, lowering the image quality and the detection of
atheroma morphology, atheroma cap thickness and the presence of µCalcs. Also important, high-frequency
ultrasound imaging allow us to acquire high resolution images, but they are highly sensitive to micromotion of
the ultrasound probe, in particular for the imaging of speckles produced by small calcifications. To address these
shortcomings, we propose developing a 3D ultrasound tomography imaging approach for enhanced imaging of
human atheroma with calcifications. The ultrasound tomography approach is based on an automated scanning
robotic system comprising two collaborative robotic arms, one full-field 3D snapshot sensor and one
Programmable Logic Controller (PLC). The robotic system will allow us significantly reducing motion artifacts,
blurring, and shadowing due to calcifications in atheroma. This image quality improvement will be achieved by
implementing multi-angle compound ultrasound tomography, where the positioning of the emitter and receiver
imaging array probes will be controlled by the scanning robotic system. If the proposed automated scanning
approach is successful in providing improved images of atheroma with calcifications, we envision this approach
could be translated to in vivo imaging of atherosclerotic plaques, and detection of µCalcs in carotid vessels.
总结
人纤维粥样硬化(FA)帽破裂导致闭塞性血栓形成,心肌梗死
(MI)每年有超过50万美国人死于猝死。斑块破裂的一个主要决定因素
风险是动脉粥样硬化帽厚度。然而,还有其他几个因素在足总中扮演着重要的角色
帽破裂,包括动脉粥样硬化形态,生物环境,组织成分和机械
环境事实上,动脉粥样硬化帽破裂的潜在机制仍然没有得到充分的理解。
近年来,血管钙化已成为在血管性心脏病中起重要作用的因素之一。
斑块破裂的稳定性。迄今为止,我们已经证明了成千上万的微钙化的存在,
(µCalcs)主要存在于使用µCT成像的未破裂的人类动脉粥样硬化帽中,并且它们表现为
帽中的背景周向应力的增强器。在我们目前资助的NIH项目中,
1 R16 GM 145474 -01“动脉粥样硬化斑块中的微钙化”,工作假设是
FA帽对FA帽破裂阈值有主要影响。不幸的是,µCT成像不能用于
人体受试者中µCalcs的体内评估。血管和血管内超声,另一方面,
常规用于动脉粥样硬化成像的非电离方法。
尽管使用超声对动脉粥样硬化的血管内/血管成像取得了重大进展,但大的动脉粥样硬化的存在仍然是一个挑战。
动脉粥样硬化中的钙化产生阴影伪影,降低了图像质量,
动脉粥样硬化形态、动脉粥样硬化帽厚度和是否存在µCalcs。同样重要的是,
超声成像使我们能够获得高分辨率的图像,但它们对微运动非常敏感。
超声探头,特别是用于由小钙化产生的散斑的成像。解决这些
缺点,我们建议开发一种3D超声断层扫描成像方法,用于增强成像,
人动脉粥样硬化伴钙化。超声断层扫描方法基于自动扫描
机器人系统,包括两个协作机器人臂、一个全场3D快照传感器和一个
可编程逻辑控制器(PLC)。机器人系统将使我们能够显著减少运动伪影,
模糊和由于粥样硬化中的钙化而产生的阴影。这种图像质量的改善将通过以下方式实现:
实现多角度复合超声断层成像,其中发射器和接收器的定位
成像阵列探针将由扫描机器人系统控制。如果提议的自动扫描
方法是成功的,在提供改善图像的动脉粥样硬化钙化,我们设想这种方法
可以转化为动脉粥样硬化斑块的体内成像和颈动脉血管中µCalcs的检测。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luis Cardoso其他文献
Luis Cardoso的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luis Cardoso', 18)}}的其他基金
Acquisition of a Verasonics Vantage 256 Research Ultrasound Platform
收购 Verasonics Vantage 256 研究超声平台
- 批准号:
10415588 - 财政年份:2022
- 资助金额:
$ 6.57万 - 项目类别:
Mechanical Function of Trabecular Bone: Bone Loss Assessment Beyond BMD
小梁骨的机械功能:BMD 之外的骨丢失评估
- 批准号:
8630400 - 财政年份:2014
- 资助金额:
$ 6.57万 - 项目类别:
Mechanical Function of Trabecular Bone: Bone Loss Assessment Beyond BMD
小梁骨的机械功能:BMD 之外的骨丢失评估
- 批准号:
9236194 - 财政年份:2014
- 资助金额:
$ 6.57万 - 项目类别:
Mechanical Function of Trabecular Bone: Bone Loss Assessment Beyond BMD
小梁骨的机械功能:BMD 之外的骨丢失评估
- 批准号:
8829243 - 财政年份:2014
- 资助金额:
$ 6.57万 - 项目类别:
Mechanical Function of Trabecular Bone: Bone Loss Assessment Beyond BMD
小梁骨的机械功能:BMD 之外的骨丢失评估
- 批准号:
9044771 - 财政年份:2014
- 资助金额:
$ 6.57万 - 项目类别:
Age Related Bone Loss Assessed by Ultrasound Tomography: Bone Quality Beyond BMD
通过超声断层扫描评估与年龄相关的骨质流失:骨质量超越 BMD
- 批准号:
8043597 - 财政年份:2009
- 资助金额:
$ 6.57万 - 项目类别:
Age Related Bone Loss Assessed by Ultrasound Tomography: Bone Quality Beyond BMD
通过超声断层扫描评估与年龄相关的骨质流失:骨质量超越 BMD
- 批准号:
7560242 - 财政年份:2009
- 资助金额:
$ 6.57万 - 项目类别:
Age Related Bone Loss Assessed by Ultrasound Tomography: Bone Quality Beyond BMD
通过超声断层扫描评估与年龄相关的骨质流失:骨质量超越 BMD
- 批准号:
7760096 - 财政年份:2009
- 资助金额:
$ 6.57万 - 项目类别:
相似海外基金
CAREER: Super-Resolution 3D Ultrasound Imaging of Brain Activity
职业:大脑活动的超分辨率 3D 超声成像
- 批准号:
2237309 - 财政年份:2023
- 资助金额:
$ 6.57万 - 项目类别:
Continuing Grant
Super-resolution 3D ultrasound tomography for material microstructure characterisation
用于材料微观结构表征的超分辨率 3D 超声断层扫描
- 批准号:
2815310 - 财政年份:2023
- 资助金额:
$ 6.57万 - 项目类别:
Studentship
PFI-RP: Towards Democratization of Ultrafast 3D Ultrasound Imaging
PFI-RP:迈向超快 3D 超声成像的民主化
- 批准号:
2329865 - 财政年份:2023
- 资助金额:
$ 6.57万 - 项目类别:
Continuing Grant
Machine Learning on 3D Ultrasound Images and Wearable IoT Data for Brace Treatment of Spinal Deformities
基于 3D 超声图像和可穿戴物联网数据的机器学习用于脊柱畸形的支架治疗
- 批准号:
RGPIN-2020-04415 - 财政年份:2022
- 资助金额:
$ 6.57万 - 项目类别:
Discovery Grants Program - Individual
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10708132 - 财政年份:2022
- 资助金额:
$ 6.57万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10587466 - 财政年份:2022
- 资助金额:
$ 6.57万 - 项目类别:
Rapid 3D Ultrasound Tomography Reconstruction Methods for Guided Interventions
用于引导干预的快速 3D 超声断层扫描重建方法
- 批准号:
10670956 - 财政年份:2022
- 资助金额:
$ 6.57万 - 项目类别:
Rapid 3D Ultrasound Tomography Reconstruction Methods for Guided Interventions
用于引导干预的快速 3D 超声断层扫描重建方法
- 批准号:
10509562 - 财政年份:2022
- 资助金额:
$ 6.57万 - 项目类别:
3D Ultrasound Vascular Flow Imaging System
3D超声血管血流成像系统
- 批准号:
547186-2020 - 财政年份:2022
- 资助金额:
$ 6.57万 - 项目类别:
Postgraduate Scholarships - Doctoral
3D ultrasound-based mechatronic guidance system
基于3D超声的机电一体化引导系统
- 批准号:
574470-2022 - 财政年份:2022
- 资助金额:
$ 6.57万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




