Enhancing CBTN digital pathology processing pipeline through the use AWS cloud-based services to enable automation, parallel processing, and rapid use of AI/ML analytics
通过使用 AWS 基于云的服务增强 CBTN 数字病理处理管道,以实现自动化、并行处理和快速使用 AI/ML 分析
基本信息
- 批准号:10827712
- 负责人:
- 金额:$ 28.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-26 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdoptionAdultArtificial IntelligenceAutomationBig DataBiologicalBrain NeoplasmsCancer EtiologyChildChildhoodChildhood Brain NeoplasmClinical DataCloud ComputingCloud ServiceCommunitiesDataData AnalyticsData SetDevelopmentDiseaseEcosystemEnvironmentEtiologyFundingGenerationsGoalsHealthcareHuman ResourcesImageInfrastructureIngestionIntakeKnowledgeLife Cycle StagesMachine LearningMalignant Childhood NeoplasmMalignant NeoplasmsManualsMedical ImagingMethodsModalityModernizationMolecularMorphologyPathologyPathway interactionsPatient CarePatientsPediatric ResearchPerformancePopulationPreparationProcessPropertyResearchResolutionResourcesSamplingScanningServicesSiteSlideSoftware ToolsStructural Congenital AnomaliesTechnologyTestingTranslationsTumor BiologyUnited States National Institutes of HealthWorkadvanced analyticschildhood cancer mortalityclinical phenotypecloud basedcloud platformcloud storagecomputing resourcescostcost estimatedata explorationdata ingestiondata integrationdata managementdata portaldata repositorydata resourcedata sharingdigitaldigital pathologyempowermentfeasibility testingflexibilitygenomic datalarge scale datamachine learning methodmultimodalitymultiple omicsnovelopen sourceparallel processingparallelizationpersonalized medicinephenotypic dataprecision medicineprogramsresearch studysoftware developmentstandard of caretooltranslational modeluser-friendlyweb servicesyears of life lost
项目摘要
PROJECT SUMMARY
The Gabriella Miller Kids First pediatric research program is a collaborative initiative with the goal of
understanding the etiology and drivers of pediatric diseases. Related efforts include (1) developing data-driven
platforms, workflows and tools; (2) accelerating discovery of generic causes and shared biologic pathways
within and across conditions; and (3) enabling rapid translation of scientific discoveries to personalized
treatments. Through this program, some of the largest, multi-modal pediatric datasets have been generated,
harmonized, and released for use by the research community. In parallel, developed software platforms have
enabled streamlined, user-friendly workflows in cloud environments to empower data exploration to analysis.
While this work has significantly advanced the use of integrated datasets, particularly for genomics and clinical
data, related advancements for medical imaging data have been slower. In the present project, we focus on
digital pathology data in research contexts and aim to enable the use of modern cloud infrastructure and
processes for Kids First digital pathology slides. Specifically, we will explore, implement, optimize, and assess
cloud platforms and services to reduce current challenges in data ingest and release, and preparation of digital
slide images for downstream analytics. The selected cloud solutions are expected to enable workflow
automation, scaling of computing resources, and full support of the entire data lifecycle. This should drastically
reduce the operational and computational costs of utilizing Kids First digital pathology data across research
contexts. Together, this project will bridge digital pathology data and tools with high-performance cloud
workspaces to accelerate their use with advanced analytics and multi-modal integration for all Kids First
pediatric data.
项目摘要
加布里埃拉米勒儿童第一儿科研究计划是一个合作倡议,目标是
了解儿科疾病的病因和驱动因素。相关工作包括(1)开发数据驱动的
平台、工作流程和工具;(2)加速发现一般原因和共同的生物学途径
(3)使科学发现能够快速转化为个性化的
治疗。通过这个项目,一些最大的、多模态的儿科数据集已经生成,
统一,并发布供研究界使用。同时,开发的软件平台
在云环境中启用了简化的、用户友好的工作流,以支持数据探索和分析。
虽然这项工作大大促进了综合数据集的使用,特别是在基因组学和临床方面,
数据,医学成像数据的相关进展一直较慢。在本项目中,我们将重点放在
研究背景下的数字病理学数据,旨在使用现代云基础设施,
Kids First数字病理切片的流程。具体来说,我们将探索、实施、优化、评估
云平台和服务,以减少当前在数据摄取和发布方面的挑战,
用于下游分析的幻灯片图像。选定的云解决方案预计将实现工作流程
自动化、计算资源的扩展以及对整个数据生命周期的全面支持。这将大大
降低在整个研究中利用Kids First数字病理学数据的运营和计算成本
contexts.总之,该项目将数字病理学数据和工具与高性能云
通过高级分析和多模式集成,为所有Kids First
儿科数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert J Carroll其他文献
Robert J Carroll的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert J Carroll', 18)}}的其他基金
AnVIL Clinical Environment for Innovation and Translation (ACE-IT)
AnVIL 创新与转化临床环境 (ACE-IT)
- 批准号:
10747551 - 财政年份:2023
- 资助金额:
$ 28.22万 - 项目类别:
Data Management and Portal for the INCLUDE (DAPI) Project
INCLUDE (DAPI) 项目的数据管理和门户
- 批准号:
10697338 - 财政年份:2020
- 资助金额:
$ 28.22万 - 项目类别:
Advancing Image Data Interoperability and Standards within an NIH Ecosystem (AIDISNE): A CHOP, FlyWheel, and Seven Bridges Integration Demonstration Project
推进 NIH 生态系统 (AIDISNE) 内的图像数据互操作性和标准:CHOP、FlyWheel 和七桥集成示范项目
- 批准号:
10690302 - 财政年份:2020
- 资助金额:
$ 28.22万 - 项目类别:
Data Management and Portal for the INCLUDE (DAPI) Project
INCLUDE (DAPI) 项目的数据管理和门户
- 批准号:
10264912 - 财政年份:2020
- 资助金额:
$ 28.22万 - 项目类别:
User-ready tools and scalable workflows for INCLUDE datasets in the cloud: advancing brain imaging data management and analytics
用于云中 INCLUDE 数据集的用户就绪工具和可扩展工作流程:推进脑成像数据管理和分析
- 批准号:
10406678 - 财政年份:2020
- 资助金额:
$ 28.22万 - 项目类别:
Data Management and Portal for the INCLUDE (DAPI) Project
INCLUDE (DAPI) 项目的数据管理和门户
- 批准号:
10472037 - 财政年份:2020
- 资助金额:
$ 28.22万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 28.22万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 28.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 28.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 28.22万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 28.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 28.22万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 28.22万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 28.22万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 28.22万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 28.22万 - 项目类别:
Standard Grant














{{item.name}}会员




