MATCHES: Making Telehealth Delivery of Cancer Care at Home Effective and Safe - Addressing missing data in the MATCHES study to improve ML/AI readiness
MATCHES:使远程医疗在家中有效且安全地提供癌症护理 - 解决 MATCHES 研究中缺失的数据,以提高 ML/AI 的准备情况
基本信息
- 批准号:10842906
- 负责人:
- 金额:$ 35.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-19 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdministrative SupplementAdoptionAlgorithmsArtificial IntelligenceCaringCenters of Research ExcellenceClinicCollaborationsComplexDataData ScienceData SetDatabasesDevicesDimensionsDocumentationElectronic Health RecordEnsureEthicsFosteringFoundationsFrightGoalsGrantHealthcareHomeLearningLiteratureLow incomeMachine LearningMethodsModelingObservational StudyOncologyOutcomePalliative CareParentsPatient Outcomes AssessmentsPatient Self-ReportPatientsPatternProcessReadinessReportingReproducibilityResearchResearch PersonnelStatistical ModelsStructureTimeWorkanalysis pipelineautoencodercancer carecancer health disparitycare deliverycomputer programcostdata reusedata sharingdesignevidence baseexperiencefeature extractiongenerative adversarial networkhealth datahealth practicehigh dimensionalityimprovedindividual patientinsightmachine learning algorithmmachine learning methodmultimodalityparent grantpatient portalpatient subsetsprecision oncologyprogramsprospectiveremediationsimulationskillsstatistical and machine learningsurvivorshiptelehealthtooltrial designunsupervised learning
项目摘要
Project Summary:
The MATCHES (Making Telehealth Delivery of Cancer Care at Home Effective and Safe) Telehealth Research
Center aims to build the evidence base necessary to establish best practices for telehealth-enabled cancer care.
Prior work demonstrates that oncology-focused telehealth can achieve favorable outcomes, but large-scale trials
have been limited to specific contexts like palliative care or survivorship. Adoption has been constrained by
restricted reimbursement. The MATCHES Center will help remediate this evidence gap by executing prospective
trials and conducting observational analyses. Data will be integrated from multi-layers from telehealth platforms,
patient portals, mobile tracking devices, and the electronic health record (EHR). This will help develop a new
paradigm in oncology—precision care delivery—with the ultimate goal of matching individual patients with the
most beneficial combination of clinic-based or telehealth-supported home-setting care at the appropriate time—
all based on the totality of dynamically available data. This will be accomplished by applying data science
methods—including nimble trial designs and machine learning—that have had limited application to telehealth.
Missing data have been observed in the MATCHES curated data sets, which is also a common issue of
both EHR and patient-reported health data. Due to the presence of missing data, the MATCHES data is not
ready for machine learning or artificial intelligence applications as inappropriate handling of missing data can
lead to both bias and loss of statistical power. Bias is particularly concerning if a subgroup of patients is more
likely to have missing data. For example, if low-income patients are more likely to skip self-reported outcomes
for fear of triggering costly work-up, their experience will be underrepresented in the data and analysis,
compromising the robustness and generalizability of conclusions. These issues are well-recognized in the
statistical literature and a wide array of tools have been developed to impute missing data with plausible values
obtained from a probabilistic model and perform analyses recognizing that some data points are imputed.
However, many imputation methods do not scale up to the dimensions in the MATCHES data, and they may not
be robust to differentmissing data mechanisms. Additionally, there is no guidance on how to examine the missing
data patterns systematically, especially in the high-dimensional feature space as in MATCHES. Hence in this
supplement, we propose and develop machine-learning-based approaches that will be able to handle a high-
dimensional feature matrix, complex patterns of missingness, and more general missing mechanisms. We will
then apply these methods to examine the complex missing data patterns and provide imputed data sets that are
ready for ML/AL applications both for the researchers of the MATCHES program and to be shared with others
across the Telehealth Research Centers of Excellence (TRACE). We will also provide analysis pipelines that will
help appropriately handle missing data in other large-scale multi-modality healthcare data sets.
项目总结:
Matches(使远程医疗在家中提供有效和安全的癌症护理)远程医疗研究
该中心旨在建立必要的证据基础,以建立远程保健癌症护理的最佳实践。
先前的工作表明,专注于肿瘤学的远程医疗可以取得良好的结果,但大规模试验
一直局限于特定的情况,如姑息治疗或生存。采用一直受到以下因素的限制
有限制的报销。火柴中心将通过执行预期执行来帮助弥补这一证据差距
试验和进行观察性分析。数据将从远程医疗平台的多层集成,
患者门户、移动跟踪设备和电子健康记录(EHR)。这将有助于开发一种新的
肿瘤学中的范例-精确的护理提供-最终目标是将个体患者与
在适当的时间提供基于诊所或远程医疗支持的居家护理的最有益组合-
所有这些都是基于动态可用数据的总和。这将通过应用数据科学来实现
方法--包括灵活的试验设计和机器学习--在远程医疗中的应用有限。
在匹配精选数据集中观察到丢失的数据,这也是
电子病历和患者报告的健康数据。由于存在缺失数据,匹配数据不会
为机器学习或人工智能应用程序做好准备,因为对丢失数据的不当处理可能
这既会导致偏差,也会导致统计能力的丧失。偏见尤其令人担忧的是,如果一小部分患者
可能有缺失的数据。例如,如果低收入患者更有可能跳过自我报告的结果
由于担心引发昂贵的工作,他们的经验将在数据和分析中被低估,
损害了结论的稳健性和普适性。这些问题在
统计文献和各种各样的工具已经被开发出来,以将丢失的数据归因于似是而非的值
从概率模型中获得,并执行识别某些数据点被归因于的分析。
但是,许多补偿方法不能扩展到匹配数据中的维度,而且可能也不能
对不同的丢失数据机制保持健壮。此外,没有关于如何检查失踪人员的指导
系统的数据模式,特别是在高维特征空间中,如匹配。因此,在这个
作为补充,我们提出并开发了基于机器学习的方法,这些方法将能够处理高-
维度特征矩阵,错位的复杂模式,以及更一般的错位机制。我们会
然后应用这些方法来检查复杂的缺失数据模式,并提供
准备好ML/AL应用程序,供Matches计划的研究人员使用并与其他人共享
远程医疗卓越研究中心(TRACE)。我们还将提供分析管道,将
帮助适当处理其他大型多医疗保健数据集中的缺失数据。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Honing in on the Hospital-at-Home Model.
- DOI:10.1016/j.mcpdig.2023.06.015
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Mullangi, Samyukta;Daly, Bobby
- 通讯作者:Daly, Bobby
Telemedicine as patient-centred oncology care: will we embrace or resist disruption?
远程医疗作为以患者为中心的肿瘤护理:我们会拥抱还是抵制颠覆?
- DOI:10.1038/s41571-023-00796-5
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:West,HowardJack;Bange,Erin;Chino,Fumiko
- 通讯作者:Chino,Fumiko
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL J MORRIS其他文献
EFFECTS OF PARTICULATE MATTER INHALATION ON CHEST IMAGING DURING DEPLOYMENT TO OPERATION INHERENT RESOLVE (OIR)
- DOI:
10.1016/j.chest.2022.08.1649 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:
- 作者:
TYSON J SJULIN;MICHAEL J MORRIS;SALLY DELVECCHIO;GIOVANNI LORENZ;BENJAMIN P ILIFF - 通讯作者:
BENJAMIN P ILIFF
CASE REPORT: USE OF THE SERAPH-100 BLOOD FILTER IN LINE WITH EXTRACORPOREAL MEMBRANE OXYGENATION CIRCUIT FOR TREATMENT OF SEPTIC SHOCK FROM ENTEROCOCCUS FAECALIS BACTEREMIA
病例报告:在体外膜氧合回路中使用 SERAPH-100 血液过滤器联合治疗粪肠球菌菌血症所致的感染性休克
- DOI:
10.1016/j.chest.2022.08.800 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:8.600
- 作者:
STEVEN STOFFEL;JOSHUA BOSTER;HENRY DANCHI;MELISSA ROSAS;MICHAEL J MORRIS;MAI T NGUYEN;ROBERT J WALTER - 通讯作者:
ROBERT J WALTER
CHARACTERIZING THE ASTHMA PHENOTYPE OF SERVICE-CONNECTED MEDICALLY SEPARATED MILITARY PERSONNEL
- DOI:
10.1016/j.chest.2023.07.3171 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:
- 作者:
JOSHUA BOSTER;STEVEN STOFFEL;WILLIAM MOORE;MICHAEL J MORRIS - 通讯作者:
MICHAEL J MORRIS
REPEAT PULMONARY FUNCTION TESTING IN ACTIVE DUTY MILITARY FOR PULMONARY DISEASES RELATED TO ENVIRONMENTAL DEPLOYMENT EXPOSURES (STAMPEDE III)
- DOI:
10.1016/j.chest.2022.08.1651 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:
- 作者:
STEVEN STOFFEL;JESS T. ANDERSON;MATEO HOULE;ROBERT J WALTER;MICHAEL J MORRIS - 通讯作者:
MICHAEL J MORRIS
ETIOLOGIES AND CHARACTERISTICS OF INTERSTITIAL LUNG DISEASE IN AN ACTIVE-DUTY MILITARY POPULATION
- DOI:
10.1016/j.chest.2023.07.2064 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:
- 作者:
WILLIAM MOORE;JOSHUA BOSTER;MICHAEL J MORRIS;IAN CHR MCINNIS;BRIAN S BARBER;MICHAEL A GONZALES - 通讯作者:
MICHAEL A GONZALES
MICHAEL J MORRIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL J MORRIS', 18)}}的其他基金
MATCHES: Making Telehealth Delivery of Cancer Care at Home Effective and Safe
匹配:使远程医疗在家中提供有效且安全的癌症护理
- 批准号:
10673980 - 财政年份:2022
- 资助金额:
$ 35.39万 - 项目类别:
MATCHES: Making Telehealth Delivery of Cancer Care at Home Effective and Safe
匹配:使远程医疗在家中提供有效且安全的癌症护理
- 批准号:
10454670 - 财政年份:2022
- 资助金额:
$ 35.39万 - 项目类别:
Clinical Qualification of Imaging and Fluid-Based Tumor Monitoring Biomarkers for Metastatic Castration Resistant Prostate Cancer
转移性去势抵抗性前列腺癌的影像学和基于液体的肿瘤监测生物标志物的临床资格
- 批准号:
9974088 - 财政年份:2020
- 资助金额:
$ 35.39万 - 项目类别:
Clinical Qualification of Imaging and Fluid-Based Tumor Monitoring Biomarkers for Metastatic Castration Resistant Prostate Cancer
转移性去势抵抗性前列腺癌的影像学和基于液体的肿瘤监测生物标志物的临床资格
- 批准号:
10447573 - 财政年份:2020
- 资助金额:
$ 35.39万 - 项目类别:
Clinical Qualification of Imaging and Fluid-Based Tumor Monitoring Biomarkers for Metastatic Castration Resistant Prostate Cancer
转移性去势抵抗性前列腺癌的影像学和基于液体的肿瘤监测生物标志物的临床资格
- 批准号:
10868060 - 财政年份:2020
- 资助金额:
$ 35.39万 - 项目类别:
相似海外基金
A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
- 批准号:
10841820 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
- 批准号:
10833895 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
Administrative Supplement: Life-Space and Activity Digital Markers for Detection of Cognitive Decline in Community-Dwelling Older Adults: The RAMS Study
行政补充:用于检测社区老年人认知衰退的生活空间和活动数字标记:RAMS 研究
- 批准号:
10844667 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
StrokeNet Administrative Supplement for the Funding Extension
StrokeNet 资助延期行政补充文件
- 批准号:
10850135 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
Biomarkers of Disease in Alcoholic Hepatitis Administrative Supplement
酒精性肝炎行政补充剂中疾病的生物标志物
- 批准号:
10840220 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
- 批准号:
10891050 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
Power-Up Study Administrative Supplement to Promote Diversity
促进多元化的 Power-Up 研究行政补充
- 批准号:
10711717 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
- 批准号:
10811292 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
Sedentary behavior, physical activity, and 24-hour behavior in pregnancy and offspring health: the Pregnancy 24/7 Offspring Study Administrative Supplement
久坐行为、体力活动和 24 小时行为对怀孕和后代健康的影响:怀孕 24/7 后代研究行政补充
- 批准号:
10893074 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:














{{item.name}}会员




