The coupled vascular hypothesis for transcranial direct current stimulation (tDCS)
经颅直流电刺激 (tDCS) 的耦合血管假说
基本信息
- 批准号:9891113
- 负责人:
- 金额:$ 34.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAffectAnatomyBiological ModelsBloodBlood - brain barrier anatomyBlood VesselsBrainBrain DiseasesBrain imagingBrain-Derived Neurotrophic FactorChemicalsClinicalCognitionCollaborationsCollectionComputer ModelsCoupledCouplingDataDependenceDiffusionDoseElectric StimulationElementsEndothelial CellsEnvironmentErythemaEtiologyFiltrationFoundationsFunctional Magnetic Resonance ImagingGene ExpressionGenesGoalsGrantHeadHomeostasisHumanImageIn VitroIndividualIon TransportIonsLearningLinkLiquid substanceMetabolicModelingNOS3 geneNeurogliaNeuronsNeurosciencesNitric OxideOsmosisPermeabilityPhysicsPlayProcessProductionRattusResearchRoleScienceShunt DeviceSkinSynaptic plasticitySystemTestingThinkingTimeTrainingVascular SystemWaterWorkblood filtrationblood-brain barrier functionblood-brain barrier permeabilizationbrain cellcapillary bedcellular targetingdensitydesignelectric fieldflexibilityfootin silicoin vivoinnovationmulti-photonmultidisciplinaryneurotrophic factornovelquantitative imagingrelating to nervous systemresponsesolutetheoriestool
项目摘要
PROJECT SUMMARY
Transcranial Direct Current Stimulation (tDCS) is investigated to treat a broad range of brain disorders and to
change cognition in healthy individuals. The scale and breadth of tDCS human trials has outpaced
understanding of cellular mechanisms. The flexibility of tDCS derives from use in combination with a training
task, with the goal to enhance “neuronal capacity” for plasticity (learning) on the specific task. tDCS is thus
applied either during or before a task, to produce an acute or persistent change in neural capacity. The rational
advancement of tDCS as a clinical/neuroscience tool requires knowing the cellular targets of stimulation, and
linking their activation with changes in neuronal capacity during and after tDCS. Neurons, and to a lesser
extent glia, have been studied as tDCS cellular targets. Endothelial cells of the blood-brain barrier (BBB) have
been unaddressed until recently by our team. Yet BBB function is well known to be sensitive to other forms of
electrical stimulation, and that changes in BBB will alter brain function. Indeed BBB stimulation is consistent
with the concept of tDCS acting to generally prime the brain (e.g. changing excitability or metabolic capacity).
This proposal addresses a novel hypothesis and scientific premise for how BBB modulation may enhance
neural capacity during or after tDCS. We propose that the conductive vascular network across the brain shunts
current and in the process generates electric fields across the BBB higher than around neurons. We believe
that BBB polarization by tDCS alters the transport of water and solutes across the BBB (during stimulation) and
activates the expression of genes leading to the production of neuroactive chemicals (including NO) by the
blood vessels of the BBB (after stimulation), all of which modulate the microenvironment of neurons and
neuronal capacity.
Given a natural bias toward interpreting any tDCS actions as reflecting direct neuron activation (and thus BBB
response as secondary/epiphenomena) we require state-of-the-art modeling and experimental tools to quantify
the direct stimulation of BBB by tDCS. We present substantial preliminary data from in silico, in vitro, and in
vivo studies that support our overall premise. This data reflects a successful R21 collaboration by our team;
having shown feasibly of a novel cellular target, this RO1 establishes the mechanism and potential impact of
direct BBB activation by tDCS. Aim 1: We will develop a multi-scale (from head anatomy to micro-vasculature)
multi-physics (coupling electric fields with electro-diffusion filtration transport) model. Aim 2: We will validate
acute (during DCS) changes in water and molecule permeability using a specially designed in vitro BBB model
system where the absence of neurons establishes a direct action of current on the BBB, as well as test the
activation of nitric oxide (NO) and other neuro-active genes (neurotrophins) by DCS in the absence of neurons.
Aim 3: Using multi-photon brain imaging for determining BBB permeability in a rat model, we will analyze the
persistent (minutes) BBB permeability changes induced by tDCS and their dependence on NO.
项目摘要
经颅直流电刺激(tDCS)被研究用于治疗广泛的脑部疾病,
改变健康个体的认知。tDCS人体试验的规模和广度已经超过了
了解细胞机制。tDCS的灵活性来自于与培训相结合的使用
任务,目标是增强特定任务的可塑性(学习)的“神经元能力”。因此,TDCS
在一项任务中或任务前使用,以产生神经能力的急性或持续变化。合理
tDCS作为临床/神经科学工具的进步需要了解刺激的细胞靶点,
将它们的激活与tDCS期间和之后神经元容量的变化联系起来。神经元,和一个较小的
神经胶质细胞,已经被研究为tDCS细胞靶点。血脑屏障(BBB)的内皮细胞具有
直到最近才被我们的团队发现。然而,众所周知,BBB功能对其他形式的干扰敏感。
电刺激,并且BBB的变化会改变脑功能。事实上,BBB刺激与
tDCS的概念通常用于启动大脑(例如,改变兴奋性或代谢能力)。
该提议提出了一个新的假设和科学前提,即BBB调制如何增强
在tDCS期间或之后的神经容量。我们认为大脑中的传导血管网络会分流
电流,并在此过程中产生的电场跨越血脑屏障高于周围的神经元。我们认为
通过tDCS的BBB极化改变了水和溶质穿过BBB的运输(在刺激期间),
激活基因的表达,导致神经活性化学物质(包括NO)的产生。
BBB的血管(刺激后),所有这些都调节神经元的微环境,
神经元能力
考虑到将任何tDCS动作解释为反映直接神经元激活(以及因此BBB)的自然偏见,
作为次要/附带现象的反应),我们需要最先进的建模和实验工具来量化
tDCS直接刺激血脑屏障。我们提出了大量的初步数据,从计算机,在体外,
支持我们整体假设的体内研究。这些数据反映了我们团队成功的R21合作;
已经显示了一种新的细胞靶点的可行性,这种RO 1建立了以下机制和潜在影响:
通过tDCS直接激活BBB。目标1:我们将开发多尺度(从头部解剖结构到微血管)
多物理场(耦合电场与电扩散过滤传输)模型。目标2:我们将验证
使用专门设计的体外BBB模型,水和分子渗透性的急性(DCS期间)变化
系统,其中神经元的缺失建立了电流对BBB的直接作用,以及测试
一氧化氮(NO)和其他神经活性基因(神经营养因子)在神经元不存在的情况下被DCS激活。
目的3:使用多光子脑成像技术测定大鼠模型中BBB通透性,我们将分析
tDCS诱导的持续(分钟)BBB通透性变化及其对NO的依赖性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MAROM BIKSON其他文献
MAROM BIKSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MAROM BIKSON', 18)}}的其他基金
Open-source computational modeling of Spinal Cord Stimulation (SCS) to enhance dissemination of 1R01NS112996
脊髓刺激 (SCS) 的开源计算模型可增强 1R01NS112996 的传播
- 批准号:
10413556 - 财政年份:2021
- 资助金额:
$ 34.34万 - 项目类别:
"Bridges to the Baccalaureate Research Training Program at LaGuardia Community College"
“通往拉瓜迪亚社区学院学士学位研究培训计划的桥梁”
- 批准号:
10462520 - 财政年份:2020
- 资助金额:
$ 34.34万 - 项目类别:
"Bridges to the Baccalaureate Research Training Program at LaGuardia Community College"
“通往拉瓜迪亚社区学院学士学位研究培训计划的桥梁”
- 批准号:
10689071 - 财政年份:2020
- 资助金额:
$ 34.34万 - 项目类别:
kHz frequency Spinal Cord Stimulation: Novel Temperature-Based Mechanisms of Action
kHz 频率脊髓刺激:基于温度的新型作用机制
- 批准号:
10709773 - 财政年份:2020
- 资助金额:
$ 34.34万 - 项目类别:
"Bridges to the Baccalaureate Research Training Program at LaGuardia Community College"
“通往拉瓜迪亚社区学院学士学位研究培训计划的桥梁”
- 批准号:
10024978 - 财政年份:2020
- 资助金额:
$ 34.34万 - 项目类别:
"Bridges to the Baccalaureate Research Training Program at LaGuardia Community College"
“通往拉瓜迪亚社区学院学士学位研究培训计划的桥梁”
- 批准号:
10220083 - 财政年份:2020
- 资助金额:
$ 34.34万 - 项目类别:
A tool-box to control and enhance tDCS spatial precision
控制和增强 tDCS 空间精度的工具箱
- 批准号:
9229408 - 财政年份:2016
- 资助金额:
$ 34.34万 - 项目类别:
A tool-box to control and enhance tDCS spatial precision
控制和增强 tDCS 空间精度的工具箱
- 批准号:
9357699 - 财政年份:2016
- 资助金额:
$ 34.34万 - 项目类别:
Modulation of blood-brain-barrier (BBB) permeability by tDCS relevant electric fi
通过 tDCS 相关电刺激调节血脑屏障 (BBB) 通透性
- 批准号:
8702690 - 财政年份:2014
- 资助金额:
$ 34.34万 - 项目类别:
Wireless Pulse Oximetry (WiPOX) for Diagnosing Intra-Operative Ischemia
用于诊断术中缺血的无线脉搏血氧仪 (WiPOX)
- 批准号:
8702683 - 财政年份:2014
- 资助金额:
$ 34.34万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
Research Grant