Robust nonparametric methods with variable selection for clustered dental data
具有聚类牙科数据变量选择的稳健非参数方法
基本信息
- 批准号:7991211
- 负责人:
- 金额:$ 15.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdmixtureAdultAffectAfrican AmericanAgeAmericanBehavioralBiologicalCenters of Research ExcellenceClinicalClinical ResearchCluster AnalysisCommunicable DiseasesCommunitiesConsensusDataData AnalysesData SetDatabasesDentalDental ResearchDental cariesDentitionDiagnosisDiseaseDisease ProgressionEnrollmentEquationEquilibriumEvaluationFamilyGeneticGoalsHealthHealth ProfessionalHealth StatusHemorrhageHeterogeneityIndividualInflammationJudgmentKnowledgeLeadLiteratureMarkov ChainsMasticationMeasuresMediatingMedicalMethodologyMethodsModelingNational Health and Nutrition Examination SurveyNational Institute of Dental and Craniofacial ResearchNatureOral cavityOral healthOutcomePainPerformancePeriodontal DiseasesPeriodontitisPopulationPovertyPreventionPrevention strategyPublic HealthResearchResearch DesignResearch PersonnelRisk AssessmentSamplingScientistSelection CriteriaSelf CareSmoking StatusSouth CarolinaSpecific qualifier valueStagingStatistical MethodsStatistical ModelsStructureSubjects SelectionsSurfaceTechniquesTooth DiseasesTooth LossTooth structureUniversitiesWeightWorkbasebonediabeticdisorder controlflexibilityimprovedindexinginnovationinsightinterestoral biofilmpermanent toothpreventpublic health relevanceresponsesimulationsoft tissuetime intervaltooltooth surfacetreatment planninguser friendly software
项目摘要
DESCRIPTION (provided by applicant): Most adults in the US are affected by tooth loss due to periodontal disease or dental caries. Prevention of tooth loss is achieved through professional dental treatment and personal oral health self-care by maintaining the natural dentition in a state of comfort and function. In order to develop appropriate dental treatment planning, dental health care professionals must understand the most effective biological, socio-demographic, behavioral and other medical factors that can affect tooth loss as determined by periodontal disease or dental caries status. Currently, however, there is no consensus concerning the most important factors that may influence dental disease, nor the optimal statistical methods for identifying these factors. There is a need for variable selection methods in robust statistical models for periodontal disease and dental caries outcomes that accommodate the clustered nature of these data (i.e. multiple outcomes from each subject). Goals: The proposed study will develop fixed effects (covariates) and random effects selection techniques for multivariate dental data with robust modeling of the latent random effects induced by clustering and will apply these methods to available databases recording dental health status to advance knowledge about factors associated with tooth loss. Subjects: The statistical methods will be evaluated on a dataset of 300 dentate subjects who were enrolled in the Gullah African-American (AA) Diabetics Study as part of the SC COBRE for Oral Health. For generalizability, the methods will be investigated on national data collected as part of NHANES (1999- 2004). Available data and study design: Periodontal status (determined by pocket depth and clinical attachment level), caries status (determined by tooth level DMFS index), other relevant biological/medical status, smoking, behavioral (brushing and flossing), demographic (poverty status) and other parameters have been collected at the Medical University of South Carolina. The Gullah AA subjects represent an interesting population with minimal genetic admixture whose dental health status remains vastly unknown. NHANES data are publicly available. Significance: The new statistical methods will advance public health by providing dental researchers enhanced knowledge about the nature of the associations between covariates and dental health and, more broadly, by enabling researchers to better target risk assessment and prevention strategies, thereby improving health status.
PUBLIC HEALTH RELEVANCE: There is a lack of consensus among dental hygenists to select the most important covariables that might influence tooth loss as determined by caries and periodontal disease. Our proposed robust statistical methods will address this issue with specific applications to explore the dental health status of Gullah-speaking African- Americans, as well as national data collected as part of NHANES (1999-2004). Our methods will have a profound impact on overall public health and the long term goal is to provide dental researchers (as well as other health scientists) a better understanding about repeated and longitudinal dental (health) data so as to prevent and control disease and improve dental health.
描述(由申请人提供):美国大多数成年人都因牙周病或龋齿而受到牙齿脱落的影响。预防牙齿脱落是通过专业的牙科治疗和个人口腔健康自我护理,保持天然牙列处于舒适和功能状态来实现的。为了制定适当的牙科治疗计划,牙科保健专业人员必须了解根据牙周病或龋齿状况确定的可能影响牙齿脱落的最有效的生物学、社会人口、行为和其他医学因素。然而,目前对于可能影响牙科疾病的最重要因素以及识别这些因素的最佳统计方法尚未达成共识。牙周病和龋齿结果的稳健统计模型中需要变量选择方法,以适应这些数据的聚类性质(即每个受试者的多个结果)。目标:拟议的研究将为多元牙科数据开发固定效应(协变量)和随机效应选择技术,并对聚类引起的潜在随机效应进行稳健建模,并将这些方法应用于记录牙齿健康状况的可用数据库,以增进对与牙齿缺失相关因素的了解。受试者:统计方法将在 300 名有齿受试者的数据集上进行评估,这些受试者参加了 Gullah 非裔美国人 (AA) 糖尿病研究,作为口腔健康 SC COBRE 的一部分。为了具有普遍性,将根据 NHANES(1999-2004 年)收集的国家数据对这些方法进行研究。现有数据和研究设计:南卡罗来纳医科大学收集了牙周状况(由牙周袋深度和临床附着水平决定)、龋齿状况(由牙齿水平 DMFS 指数决定)、其他相关生物/医学状况、吸烟、行为(刷牙和使用牙线)、人口统计(贫困状况)和其他参数。 Gullah AA 受试者代表了一个有趣的群体,其遗传混合物最少,但其牙齿健康状况仍知之甚少。 NHANES 数据是公开的。意义:新的统计方法将通过为牙科研究人员提供关于协变量与牙齿健康之间关联性质的更多知识来促进公共卫生,更广泛地说,使研究人员能够更好地确定风险评估和预防策略,从而改善健康状况。
公共健康相关性:牙科保健员对于选择可能影响龋齿和牙周病确定的牙齿脱落的最重要的协变量缺乏共识。我们提出的稳健统计方法将通过具体应用来解决这个问题,以探索古拉语非裔美国人的牙齿健康状况,以及作为 NHANES(1999-2004)一部分收集的国家数据。我们的方法将对整体公共卫生产生深远的影响,长期目标是让牙科研究人员(以及其他健康科学家)更好地了解重复和纵向的牙科(健康)数据,从而预防和控制疾病并改善牙齿健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dipankar Bandyopadhyay其他文献
Dipankar Bandyopadhyay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dipankar Bandyopadhyay', 18)}}的其他基金
A pragmatic risk index evaluating the elderly with comorbidity for oral health event times
评估患有合并症的老年人口腔健康事件时间的实用风险指数
- 批准号:
10593634 - 财政年份:2022
- 资助金额:
$ 15.56万 - 项目类别:
Sex/Gender influences on periodontal disease and diabetes: A population science approach, with software
性别/性别对牙周病和糖尿病的影响:人口科学方法与软件
- 批准号:
10531704 - 财政年份:2022
- 资助金额:
$ 15.56万 - 项目类别:
Spatiotemporal models for periodontal disease monitoring and recall frequencies
牙周病监测和召回频率的时空模型
- 批准号:
9321599 - 财政年份:2015
- 资助金额:
$ 15.56万 - 项目类别:
Spatiotemporal models for periodontal disease monitoring and recall frequencies
牙周病监测和召回频率的时空模型
- 批准号:
8983525 - 财政年份:2015
- 资助金额:
$ 15.56万 - 项目类别:
Exploring tooth survival using Bayesian spatial models
使用贝叶斯空间模型探索牙齿存活率
- 批准号:
8699584 - 财政年份:2014
- 资助金额:
$ 15.56万 - 项目类别:
Exploring tooth survival using Bayesian spatial models
使用贝叶斯空间模型探索牙齿存活率
- 批准号:
8827320 - 财政年份:2014
- 资助金额:
$ 15.56万 - 项目类别:
Exploring tooth survival using Bayesian spatial models
使用贝叶斯空间模型探索牙齿存活率
- 批准号:
9195676 - 财政年份:2014
- 资助金额:
$ 15.56万 - 项目类别:
Robust Transition Models for the Analysis of Longitudinal Drinking Outcomes
用于分析纵向饮酒结果的稳健转变模型
- 批准号:
8787586 - 财政年份:2011
- 资助金额:
$ 15.56万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Research Grant














{{item.name}}会员




