Single-molecule and super-resolution imaging methods with maximum photon efficiency, increased spatiotemporal resolution and high detection sensitivity in densely crowded environments
单分子和超分辨率成像方法,在密集拥挤的环境中具有最大光子效率、更高的时空分辨率和高检测灵敏度
基本信息
- 批准号:9809804
- 负责人:
- 金额:$ 26.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAreaBiochemistryBiologicalBiological ProcessBiomedical ResearchBudgetsCell NucleusCellsCellular StructuresCellular biologyComplexCrowdingDNA Polymerase IIDataDetectionDevelopmental BiologyDiffuseDisciplineDiseaseEnvironmentEquilibriumEventFluorescenceFluorescent ProbesGeneticGenomicsGoalsHealthImageImageryImaging DeviceImmunologyIn SituIndividualInterferometryLabelLengthMacromolecular ComplexesMethodsMicroscopeMicroscopyMolecularMolecular StructureMonitorMovementNeurosciencesOpticsOrganismPhasePhotobleachingPhotonsProcessRNAResolutionSamplingSignal TransductionSpecificitySpecimenStructureTechniquesTechnologyThree-Dimensional ImagingTimebasebiological systemsexperimental studyfluorescence imagingfluorophoreimaging approachimaging modalityin vivoinstrumentinterestknowledge basemacromolecular assemblymeetingsmillisecondmolecular imagingmolecular scalenanometernew technologynovelparticlephoto switchprototypesingle moleculespatiotemporalstructural biologytemporal measurementtooltraffickingtranscription factor
项目摘要
ABSTRACT
Reaching a more complete understanding of biological processes and mechanisms that
underlie health and disease demands a better integration of information spanning multiple
length and time scales. Super-resolution microscopy and single-molecule approaches have
emerged as potent tools that extend the spatial resolution and detection sensitivity in live
biological imaging. However, the current state-of-the-art techniques often achieve limited 3D
resolution that precludes visualizing spatial organization at the molecular scale. Moreover
balancing trade-offs between temporal and spatial resolution, while operating with a limited
photon budget often results in severely shortened single-molecule observation times. Finally,
many microscope configurations are challenged when imaging weak signals from single-
molecules, especially due to high background in crowded cellular specimens. Thus, although
promising, the full potential of single-molecule/super-resolution methods for transforming our
molecular understanding of biological processes has yet to be realized. To fill critical technical
gaps, new optimized microscope configurations are needed - that can operate at the limits of
spatiotemporal resolution while maximizing the information content of dim fluorescence signals.
We hypothesize that this goal can be achieved through novel combinations of 3D interferometry,
targeted fluorescence switching, while further harnessing emerging photon-efficient algorithms
to increase resolution as well as prolong total observation times. Based on these ideas we
propose to develop novel super-resolution and single-molecule fluorescence imaging tools,
focusing on two specific aims: (1) To extend the spatiotemporal scales of localization-based
single-molecule imaging and tracking to 1 nanometer isotropic 3D resolution and to ~1,000
data-point in vivo observation traces at down to (sub)millisecond sampling rates; (2) To achieve
real-time single-molecule detection sensitivity in addressable 3D volumes, at presence of micro-
Molar background concentrations, and inside highly crowded intracellular environments. The
new techniques will significantly increase our abilities to interrogate dynamic biological
processes with molecular detail, thus having widespread and immediate impact across
biomedical disciplines.
摘要
更全面地了解生物过程和机制,
健康和疾病的基础需要更好地整合跨多个
长度和时间尺度。超分辨率显微镜和单分子方法
成为扩展空间分辨率和检测灵敏度的有效工具,
生物成像然而,当前最先进的技术通常实现有限的3D
分辨率排除了分子尺度上的空间组织可视化。此外
平衡时间和空间分辨率之间的权衡,同时以有限的
光子预算经常导致单分子观测时间的严重缩短。最后,
许多显微镜配置在成像来自单个的微弱信号时受到挑战,
分子,特别是由于拥挤的细胞标本中的高背景。因此虽然
有前途的,单分子/超分辨率方法的全部潜力,以改变我们的
对生物过程的分子理解还有待实现。填补关键技术
差距,需要新的优化的显微镜配置-可以在
时空分辨率,同时最大化暗淡荧光信号的信息内容。
我们假设这一目标可以通过3D干涉测量的新组合来实现,
靶向荧光切换,同时进一步利用新兴的光子高效算法
以提高分辨率并延长总观察时间。基于这些想法,我们
提出开发新型超分辨率和单分子荧光成像工具,
重点关注两个具体目标:(1)扩展基于定位的时空尺度
单分子成像和跟踪可达到1纳米各向同性3D分辨率,
以低至(亚)毫秒的采样率的数据点体内观察轨迹;(2)为了实现
实时单分子检测灵敏度在可寻址的3D体积,在存在微
摩尔背景浓度,以及高度拥挤的细胞内环境。的
新技术将大大提高我们询问动态生物的能力,
过程与分子细节,从而具有广泛和直接的影响,
生物医学学科
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandros Pertsinidis其他文献
Alexandros Pertsinidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandros Pertsinidis', 18)}}的其他基金
Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
- 批准号:
10707375 - 财政年份:2022
- 资助金额:
$ 26.94万 - 项目类别:
Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
- 批准号:
10510195 - 财政年份:2022
- 资助金额:
$ 26.94万 - 项目类别:
Mechanisms of enhancer-promoter communication, genome organization and transcription control
增强子-启动子通讯、基因组组织和转录控制的机制
- 批准号:
10672880 - 财政年份:2022
- 资助金额:
$ 26.94万 - 项目类别:
Mechanisms of enhancer-promoter communication, genome organization and transcription control
增强子-启动子通讯、基因组组织和转录控制的机制
- 批准号:
10343329 - 财政年份:2022
- 资助金额:
$ 26.94万 - 项目类别:
Development of 3D interferometric super-resolution methods for imaging dynamic, multi-component molecular systems, in single cells and in multi-cellular environments
开发 3D 干涉超分辨率方法,用于在单细胞和多细胞环境中对动态、多组分分子系统进行成像
- 批准号:
10245100 - 财政年份:2019
- 资助金额:
$ 26.94万 - 项目类别:
Development of 3D interferometric super-resolution methods for imaging dynamic, multi-component molecular systems, in single cells and in multi-cellular environments
开发 3D 干涉超分辨率方法,用于在单细胞和多细胞环境中对动态、多组分分子系统进行成像
- 批准号:
10022131 - 财政年份:2019
- 资助金额:
$ 26.94万 - 项目类别:
Single-molecule and super-resolution imaging methods with maximum photon efficiency, increased spatiotemporal resolution and high detection sensitivity in densely crowded environments
单分子和超分辨率成像方法,在密集拥挤的环境中具有最大光子效率、更高的时空分辨率和高检测灵敏度
- 批准号:
10005376 - 财政年份:2019
- 资助金额:
$ 26.94万 - 项目类别:
Understanding Gene Transcription from First-Principles: A single-molecule study
从第一原理理解基因转录:单分子研究
- 批准号:
8355484 - 财政年份:2012
- 资助金额:
$ 26.94万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 26.94万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 26.94万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 26.94万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 26.94万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 26.94万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 26.94万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 26.94万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 26.94万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 26.94万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 26.94万 - 项目类别:
Standard Grant