Mechanisms of enhancer-promoter communication, genome organization and transcription control
增强子-启动子通讯、基因组组织和转录控制的机制
基本信息
- 批准号:10343329
- 负责人:
- 金额:$ 48.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional4D ImagingAcuteAdoptedAdultArchitectureAwardBase PairingBindingBiochemicalBiochemistryBiologyBiophysical ProcessBiophysicsCRISPR interferenceCell CommunicationCell NucleusCell physiologyCellsChromatinChromatin LoopCommunicationComplexCrowdingCuesDNADNA Polymerase IIDataDevelopmentDiseaseDistalDistantElementsEmbryoEnhancersEnsureEnvironmentFrequenciesGene ExpressionGene Expression RegulationGenesGenetic Enhancer ElementGenetic TranscriptionGenomeGenomicsGoalsHealthHumanImageImaging TechniquesImaging technologyIndividualKineticsKnowledgeMammalian CellMediatingMessenger RNAMethodologyMethodsModelingMolecularMonitorNuclear StructurePhysicsPolymersPositioning AttributeProcessProductionProteinsRNA Polymerase IIRegenerative MedicineRegulationRegulatory ElementResolutionRoleShapesSignal TransductionSpecific qualifier valueStructureSystemTestingTherapeuticTherapeutic InterventionTimeTranscriptional ActivationTranscriptional RegulationValidationWorkYY1 Transcription Factorbiophysical techniquescell typecellular engineeringcohesindifferential expressiongenomic locushuman diseaseimaging capabilitiesimaging modalitylive cell imagingnovelnovel strategiesoptical imagingpreventive interventionprogramspromotersingle moleculespatiotemporaltranscription factor
项目摘要
ABSTRACT
Metazoan genomes achieve complex gene control by uncoupling regulatory DNA elements from target
promoters and allowing regulation at a distance. Thus, a gene can be differentially expressed in different cell
types and under different environmental signals or developmental cues. How distal regulatory elements
(enhancers) target specific gene promoters, how the search process is shaped by the topology of the genome
in the nucleus and how enhancer-promoter interactions are facilitated by regulatory complexes that relay
signals to the RNA Polymerase II and control transcription activity remains a mystery. Our goal is to
understand molecular and biophysical mechanisms that enable enhancer-promoter communication in human
and other mammalian cells. Towards these goals and during the period of this award we will accomplish the
following: (i) visualize the dynamic communication of enhancers and target promoters simultaneously with the
association of regulatory complexes and gene activity, using novel single-molecule and super-resolution
approaches for non-invasive 4D imaging of structure and function of the genome in single live cells; (ii)
determine mechanisms by which different classes of architectural proteins shape genome folding, enhancer-
promoter communication and transcription kinetics; (iii) dissect the function and interdependencies of individual
constituent enhancer elements within complex regulatory landscapes controlling cell identity genes. Our results
will establish quantitative frameworks for understanding the biochemistry of transcription regulation in the
crowded environment of the nucleus and for interpreting gene regulation and genome organization using soft-
matter/polymer physics and related biophysical concepts. These conceptual leaps are needed to ultimately
understand physical chromatin organization at sub-Mb scales, the scale most relevant for regulatory genome
interactions. Our integrated structure-function approach will provide functional validation and critical tests for
gene “regulation-at-a-distance” models. The proposed studies will not only provide substantial new knowledge
on the mechanisms of promoter-enhancer communication but will also set the stage for further studies of the
interplay of genome topology/organization and gene expression regulation.
抽象的
后生动物基因组通过将调控DNA元件与靶标解偶联来实现复杂的基因控制
促进者并允许远程监管。因此,一个基因可以在不同的细胞中差异表达。
类型和不同的环境信号或发育线索。远端调控元件如何
(增强子)针对特定基因启动子,搜索过程如何由基因组拓扑决定
细胞核中的增强子-启动子相互作用如何通过传递的调控复合物促进
向 RNA 聚合酶 II 发出信号并控制转录活性仍然是一个谜。我们的目标是
了解促进人类增强子-启动子沟通的分子和生物物理机制
和其他哺乳动物细胞。为了实现这些目标,在获奖期间,我们将实现
以下:(i)可视化增强子和目标启动子的动态通信,同时
使用新型单分子和超分辨率将调控复合物与基因活性关联起来
对单个活细胞中基因组结构和功能进行非侵入性 4D 成像的方法; (二)
确定不同类别的结构蛋白塑造基因组折叠、增强子的机制
启动子通讯和转录动力学; (iii) 剖析个人的功能和相互依赖性
控制细胞身份基因的复杂调控环境中的组成增强子元件。我们的成果
将建立定量框架来理解转录调控的生物化学
细胞核的拥挤环境,并使用软件解释基因调控和基因组组织
物质/聚合物物理学和相关的生物物理学概念。最终需要这些概念上的飞跃
了解亚 Mb 尺度的物理染色质组织,该尺度与调控基因组最相关
互动。我们的集成结构功能方法将为
基因“远距离调控”模型。拟议的研究不仅会提供大量新知识
启动子-增强子通讯机制的研究,但也将为进一步研究奠定基础
基因组拓扑/组织与基因表达调控的相互作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandros Pertsinidis其他文献
Alexandros Pertsinidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandros Pertsinidis', 18)}}的其他基金
Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
- 批准号:
10707375 - 财政年份:2022
- 资助金额:
$ 48.43万 - 项目类别:
Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
- 批准号:
10510195 - 财政年份:2022
- 资助金额:
$ 48.43万 - 项目类别:
Mechanisms of enhancer-promoter communication, genome organization and transcription control
增强子-启动子通讯、基因组组织和转录控制的机制
- 批准号:
10672880 - 财政年份:2022
- 资助金额:
$ 48.43万 - 项目类别:
Development of 3D interferometric super-resolution methods for imaging dynamic, multi-component molecular systems, in single cells and in multi-cellular environments
开发 3D 干涉超分辨率方法,用于在单细胞和多细胞环境中对动态、多组分分子系统进行成像
- 批准号:
10245100 - 财政年份:2019
- 资助金额:
$ 48.43万 - 项目类别:
Single-molecule and super-resolution imaging methods with maximum photon efficiency, increased spatiotemporal resolution and high detection sensitivity in densely crowded environments
单分子和超分辨率成像方法,在密集拥挤的环境中具有最大光子效率、更高的时空分辨率和高检测灵敏度
- 批准号:
9809804 - 财政年份:2019
- 资助金额:
$ 48.43万 - 项目类别:
Development of 3D interferometric super-resolution methods for imaging dynamic, multi-component molecular systems, in single cells and in multi-cellular environments
开发 3D 干涉超分辨率方法,用于在单细胞和多细胞环境中对动态、多组分分子系统进行成像
- 批准号:
10022131 - 财政年份:2019
- 资助金额:
$ 48.43万 - 项目类别:
Single-molecule and super-resolution imaging methods with maximum photon efficiency, increased spatiotemporal resolution and high detection sensitivity in densely crowded environments
单分子和超分辨率成像方法,在密集拥挤的环境中具有最大光子效率、更高的时空分辨率和高检测灵敏度
- 批准号:
10005376 - 财政年份:2019
- 资助金额:
$ 48.43万 - 项目类别:
Understanding Gene Transcription from First-Principles: A single-molecule study
从第一原理理解基因转录:单分子研究
- 批准号:
8355484 - 财政年份:2012
- 资助金额:
$ 48.43万 - 项目类别:
相似海外基金
Observation for dynamic process of dental caries by in situ 4D imaging
原位4D成像观察龋齿动态过程
- 批准号:
23K16022 - 财政年份:2023
- 资助金额:
$ 48.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/Y003586/1 - 财政年份:2023
- 资助金额:
$ 48.43万 - 项目类别:
Training Grant
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/X009262/1 - 财政年份:2023
- 资助金额:
$ 48.43万 - 项目类别:
Training Grant
4D Imaging of Biofunctional Information by Multidimensional Measurement and Lightwave Manipulation of Scattered Light
通过多维测量和散射光的光波操纵对生物功能信息进行 4D 成像
- 批准号:
23KJ1570 - 财政年份:2023
- 资助金额:
$ 48.43万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigating the principles of physiological and pathological vascular remodeling via 4D imaging of live mouse skin
通过活体小鼠皮肤 4D 成像研究生理和病理血管重塑的原理
- 批准号:
10739431 - 财政年份:2023
- 资助金额:
$ 48.43万 - 项目类别:
4D imaging of the dynamic molecular, cellular and tissue organization in living systems
生命系统中动态分子、细胞和组织组织的 4D 成像
- 批准号:
BB/W020335/1 - 财政年份:2022
- 资助金额:
$ 48.43万 - 项目类别:
Research Grant
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2021
- 资助金额:
$ 48.43万 - 项目类别:
Discovery Grants Program - Individual
confocal microscope for 4D imaging of multicellular structure and activity
用于多细胞结构和活性 4D 成像的共焦显微镜
- 批准号:
465594799 - 财政年份:2021
- 资助金额:
$ 48.43万 - 项目类别:
Major Research Instrumentation
4D imaging of arterial-wall fiber structure under pulsatile conditions by using synchrotron radiation phase-contrast CT
使用同步辐射相衬 CT 对脉动条件下的动脉壁纤维结构进行 4D 成像
- 批准号:
20K21899 - 财政年份:2020
- 资助金额:
$ 48.43万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2020
- 资助金额:
$ 48.43万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




