Mechanisms of enhancer-promoter communication, genome organization and transcription control

增强子-启动子通讯、基因组组织和转录控制的机制

基本信息

项目摘要

ABSTRACT Metazoan genomes achieve complex gene control by uncoupling regulatory DNA elements from target promoters and allowing regulation at a distance. Thus, a gene can be differentially expressed in different cell types and under different environmental signals or developmental cues. How distal regulatory elements (enhancers) target specific gene promoters, how the search process is shaped by the topology of the genome in the nucleus and how enhancer-promoter interactions are facilitated by regulatory complexes that relay signals to the RNA Polymerase II and control transcription activity remains a mystery. Our goal is to understand molecular and biophysical mechanisms that enable enhancer-promoter communication in human and other mammalian cells. Towards these goals and during the period of this award we will accomplish the following: (i) visualize the dynamic communication of enhancers and target promoters simultaneously with the association of regulatory complexes and gene activity, using novel single-molecule and super-resolution approaches for non-invasive 4D imaging of structure and function of the genome in single live cells; (ii) determine mechanisms by which different classes of architectural proteins shape genome folding, enhancer- promoter communication and transcription kinetics; (iii) dissect the function and interdependencies of individual constituent enhancer elements within complex regulatory landscapes controlling cell identity genes. Our results will establish quantitative frameworks for understanding the biochemistry of transcription regulation in the crowded environment of the nucleus and for interpreting gene regulation and genome organization using soft- matter/polymer physics and related biophysical concepts. These conceptual leaps are needed to ultimately understand physical chromatin organization at sub-Mb scales, the scale most relevant for regulatory genome interactions. Our integrated structure-function approach will provide functional validation and critical tests for gene “regulation-at-a-distance” models. The proposed studies will not only provide substantial new knowledge on the mechanisms of promoter-enhancer communication but will also set the stage for further studies of the interplay of genome topology/organization and gene expression regulation.
摘要 后生动物基因组通过将调控DNA元件与靶基因解偶联实现复杂的基因控制 启动子,并允许远程调节。因此,基因可以在不同的细胞中差异表达, 类型和不同的环境信号或发展线索下。远端调控元件 (增强子)靶向特定的基因启动子,搜索过程是如何被基因组的拓扑结构塑造的 以及增强子-启动子相互作用如何通过调节复合物促进, RNA聚合酶II的信号和控制转录活性仍然是一个谜。我们的目标是 了解使人类增强子-启动子通讯的分子和生物物理机制 和其他哺乳动物细胞。为了实现这些目标,在这个奖项期间,我们将完成 (i)可视化增强子和靶启动子的动态通讯,同时使用 调节复合物和基因活性的关联,使用新的单分子和超分辨率 用于单个活细胞中基因组的结构和功能的非侵入性4D成像的方法;(ii) 确定不同类型的结构蛋白质塑造基因组折叠的机制,增强子- 启动子通讯和转录动力学;(iii)剖析个体的功能和相互依赖性 在控制细胞身份基因的复杂调控景观中的组成增强子元件。我们的结果 将建立定量框架,了解生物化学的转录调控, 拥挤的环境中的细胞核和解释基因调控和基因组组织使用软- 物质/聚合物物理学和相关的生物物理学概念。这些概念上的飞跃是必要的, 了解亚Mb尺度下的物理染色质组织,该尺度与调控基因组最相关 交互.我们的综合结构-功能方法将为以下方面提供功能验证和关键测试: 基因“远距离调节”模型。拟议的研究不仅将提供大量的新知识, 启动子-增强子通讯的机制,但也将为进一步研究 基因组拓扑/组织和基因表达调控相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexandros Pertsinidis其他文献

Alexandros Pertsinidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexandros Pertsinidis', 18)}}的其他基金

Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
  • 批准号:
    10707375
  • 财政年份:
    2022
  • 资助金额:
    $ 48.43万
  • 项目类别:
Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
  • 批准号:
    10510195
  • 财政年份:
    2022
  • 资助金额:
    $ 48.43万
  • 项目类别:
Mechanisms of enhancer-promoter communication, genome organization and transcription control
增强子-启动子通讯、基因组组织和转录控制的机制
  • 批准号:
    10343329
  • 财政年份:
    2022
  • 资助金额:
    $ 48.43万
  • 项目类别:
Single-molecule and super-resolution imaging methods with maximum photon efficiency, increased spatiotemporal resolution and high detection sensitivity in densely crowded environments
单分子和超分辨率成像方法,在密集拥挤的环境中具有最大光子效率、更高的时空分辨率和高检测灵敏度
  • 批准号:
    9809804
  • 财政年份:
    2019
  • 资助金额:
    $ 48.43万
  • 项目类别:
Development of 3D interferometric super-resolution methods for imaging dynamic, multi-component molecular systems, in single cells and in multi-cellular environments
开发 3D 干涉超分辨率方法,用于在单细胞和多细胞环境中对动态、多组分分子系统进行成像
  • 批准号:
    10245100
  • 财政年份:
    2019
  • 资助金额:
    $ 48.43万
  • 项目类别:
Development of 3D interferometric super-resolution methods for imaging dynamic, multi-component molecular systems, in single cells and in multi-cellular environments
开发 3D 干涉超分辨率方法,用于在单细胞和多细胞环境中对动态、多组分分子系统进行成像
  • 批准号:
    10022131
  • 财政年份:
    2019
  • 资助金额:
    $ 48.43万
  • 项目类别:
Single-molecule and super-resolution imaging methods with maximum photon efficiency, increased spatiotemporal resolution and high detection sensitivity in densely crowded environments
单分子和超分辨率成像方法,在密集拥挤的环境中具有最大光子效率、更高的时空分辨率和高检测灵敏度
  • 批准号:
    10005376
  • 财政年份:
    2019
  • 资助金额:
    $ 48.43万
  • 项目类别:
Understanding Gene Transcription from First-Principles: A single-molecule study
从第一原理理解基因转录:单分子研究
  • 批准号:
    8355484
  • 财政年份:
    2012
  • 资助金额:
    $ 48.43万
  • 项目类别:

相似海外基金

3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
  • 批准号:
    NE/Y003586/1
  • 财政年份:
    2023
  • 资助金额:
    $ 48.43万
  • 项目类别:
    Training Grant
Observation for dynamic process of dental caries by in situ 4D imaging
原位4D成像观察龋齿动态过程
  • 批准号:
    23K16022
  • 财政年份:
    2023
  • 资助金额:
    $ 48.43万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
  • 批准号:
    NE/X009262/1
  • 财政年份:
    2023
  • 资助金额:
    $ 48.43万
  • 项目类别:
    Training Grant
4D Imaging of Biofunctional Information by Multidimensional Measurement and Lightwave Manipulation of Scattered Light
通过多维测量和散射光的光波操纵对生物功能信息进行 4D 成像
  • 批准号:
    23KJ1570
  • 财政年份:
    2023
  • 资助金额:
    $ 48.43万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Investigating the principles of physiological and pathological vascular remodeling via 4D imaging of live mouse skin
通过活体小鼠皮肤 4D 成像研究生理和病理血管重塑的原理
  • 批准号:
    10739431
  • 财政年份:
    2023
  • 资助金额:
    $ 48.43万
  • 项目类别:
4D imaging of the dynamic molecular, cellular and tissue organization in living systems
生命系统中动态分子、细胞和组织组织的 4D 成像
  • 批准号:
    BB/W020335/1
  • 财政年份:
    2022
  • 资助金额:
    $ 48.43万
  • 项目类别:
    Research Grant
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
  • 批准号:
    RGPIN-2017-04293
  • 财政年份:
    2021
  • 资助金额:
    $ 48.43万
  • 项目类别:
    Discovery Grants Program - Individual
confocal microscope for 4D imaging of multicellular structure and activity
用于多细胞结构和活性 4D 成像的共焦显微镜
  • 批准号:
    465594799
  • 财政年份:
    2021
  • 资助金额:
    $ 48.43万
  • 项目类别:
    Major Research Instrumentation
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
  • 批准号:
    RGPIN-2017-04293
  • 财政年份:
    2020
  • 资助金额:
    $ 48.43万
  • 项目类别:
    Discovery Grants Program - Individual
4D imaging of arterial-wall fiber structure under pulsatile conditions by using synchrotron radiation phase-contrast CT
使用同步辐射相衬 CT 对脉动条件下的动脉壁纤维结构进行 4D 成像
  • 批准号:
    20K21899
  • 财政年份:
    2020
  • 资助金额:
    $ 48.43万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了