Innovative Silicon Photomultiplier Technologies for Small-Animal PET
用于小动物 PET 的创新硅光电倍增技术
基本信息
- 批准号:9287788
- 负责人:
- 金额:$ 35.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:AnimalsBiologicalBiological ModelsBiological ProcessBiomedical ResearchBrainBrain imagingBreastChronicClinical TrialsCodeCommunitiesComputer softwareCouplingCustomDarknessDataDevelopmentDevice DesignsDevice or Instrument DevelopmentDevicesElectronicsElementsEngineeringEvaluationFloodsFundingFutureGeometryGoalsImageImaging TechniquesIndustrializationIndustry CollaborationInflammationKineticsLaboratoriesLibrariesLightMagnetic Resonance ImagingMeasurementMeasuresMedical ImagingMedical ResearchMethodsMolecular TargetMonte Carlo MethodMusNoiseNuclearOrganOutcomePathway interactionsPerformancePharmacologic SubstancePhysicsPhysiologic pulsePositioning AttributePositron-Emission TomographyPropertyProteinsRadiopharmaceuticalsResearchResolutionRodentShapesSignal TransductionSiliconStructureSurfaceSystemTechnologyTemperatureTimeUnited States National Institutes of HealthWorkadvanced simulationbasebreast scannercommercializationdata acquisitiondesigndetectorfallsgray matterimaging studyimaging systemimprovedin vivoinnovationinstrumentmeetingsmetabolic imagingmolecular imagingnew technologynovel therapeuticsopen sourcephotomultiplierpre-clinicalpreclinical studyprototypepublic health relevancequantitative imagingreceptor expressionsensorsimulationsoftware developmenttooluptake
项目摘要
DESCRIPTION (provided by applicant): Preclinical positron emission tomography (PET) has become a widely used tool in biomedical research, particularly in the evaluation of new therapeutics. Hundreds of scanners are installed across the world in major medical research centers and within pharmaceutical companies. For a variety of reasons, however, the performance of these systems falls well short of what can theoretically be achieved. This has two important consequences. Firstly, the quantitative potential of current studies of radiopharmaceutical kinetics and uptake is undermined by limited spatial resolution (reducing accuracy) and limited sensitivity (reducing precision). Secondly, important applications for preclinical PET, for example metabolic imaging in gray matter structures in the mouse brain or studies of low abundance protein targets, such as TSPO receptor expression in chronic inflammation, are just out of the reach of current instruments. The goal of this proposal is to develop a pathway towards small-animal PET scanners that can come as close as possible to the theoretical limits of spatial resolution and sensitivity imposed by fundamental physics and the properties of available detector materials. Building on 15 years of development of increasingly high resolution detectors for small-animal PET, recent advances in realizing dual-ended detectors that can also simultaneously provide high sensitivity and combining these with highly innovative silicon photomultiplier (SiPM) photodetectors, we propose a design that will lead to detector modules with unprecedented performance for small-animal PET applications. Specifically, we will develop fully-engineered detector modules suitable for close packing in a preclinical PET scanner geometry that will support better than 0.6 mm reconstructed spatial resolution, an average sensitivity of >10% across the whole body of a mouse, depth-of-interaction resolution < 3 mm, timing resolution < 3 ns and energy resolution < 30%. We will develop the electronics and software to efficiently read out these modules with no significant degradation in performance and integrate them into the open source OpenPET libraries for access by the entire nuclear medical imaging community. Lastly, we will use experimental data from fully-engineered detector modules combined with advanced simulation tools to design and predict the performance of a preclinical scanner using our new technology. The outcome of this proposal will be detector modules and a scanner design that advance preclinical PET to new levels of spatial resolution and sensitivity together with the comprehensive set of experimental and simulation data that will be needed to justify moving to the next stage of developing a prototype small-animal PET scanner. There also will be a broader impact in that the detector technology and electronics developed will be applicable to other PET systems, especially dedicated organ imaging (e.g. brain, breast) scanners and PET/MR systems.
描述(由申请人提供):临床前正电子发射断层扫描(PET)已成为生物医学研究中广泛使用的工具,特别是在新疗法的评估中。数以百计的扫描仪安装在世界各地的主要医学研究中心和制药公司内部。然而,由于各种原因,这些系统的性能远远达不到理论上可以达到的水平。这有两个重要的后果。首先,有限的空间分辨率(降低精度)和有限的灵敏度(降低精度)削弱了当前放射性药物动力学和摄取研究的量化潜力。其次,临床前PET的重要应用,如小鼠大脑灰质结构的代谢成像,或低丰度蛋白质靶标的研究,如慢性炎症中TSPO受体的表达,都是目前仪器无法企及的。这项提议的目标是开发一条通往小动物PET扫描仪的途径,该扫描仪可以尽可能接近基础物理和现有探测器材料的特性施加的空间分辨率和灵敏度的理论极限。基于15年来小动物PET用分辨率越来越高的探测器的开发,在实现同时提供高灵敏度的双端探测器方面的最新进展,并将其与高度创新的硅光电倍增管(SiPM)光电探测器相结合,我们提出了一种设计,将导致用于小动物PET应用的探测器模块具有前所未有的性能。具体地说,我们将开发适合在临床前PET扫描仪几何形状中紧密堆积的全工程探测器模块,该模块将支持优于0.6 mm的重建空间分辨率,整个鼠标的平均灵敏度为>;10%,交互深度分辨率<;3 mm,时间分辨率<;3 ns和能量分辨率<;30%。我们将开发电子设备和软件,在不显著降低性能的情况下高效地读取这些模块,并将它们集成到开放源码的OpenPET库中,供整个核医学成像社区访问。最后,我们将使用来自全工程探测器模块的实验数据结合先进的模拟工具来设计和预测使用我们的新技术的临床前扫描仪的性能。这项提议的结果将是探测器模块和扫描仪设计,将临床前PET提升到新的空间分辨率和灵敏度水平,以及全面的实验和模拟数据集,这将证明进入开发小动物PET扫描仪原型的下一阶段是合理的。它还将产生更广泛的影响,因为开发的探测器技术和电子设备将适用于其他PET系统,特别是专用器官成像仪(例如大脑、乳房)扫描仪和PET/MR系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon R Cherry其他文献
Functional whole-brain imaging in behaving rodents
行为啮齿动物的功能性全脑成像
- DOI:
10.1038/nmeth0411-301 - 发表时间:
2011-03-30 - 期刊:
- 影响因子:32.100
- 作者:
Simon R Cherry - 通讯作者:
Simon R Cherry
New PET technologies – embracing progress and pushing the limits
- DOI:
10.1007/s00259-021-05390-4 - 发表时间:
2021-06-03 - 期刊:
- 影响因子:7.600
- 作者:
Nicolas Aide;Charline Lasnon;Adam Kesner;Craig S Levin;Irene Buvat;Andrei Iagaru;Ken Hermann;Ramsey D Badawi;Simon R Cherry;Kevin M Bradley;Daniel R McGowan - 通讯作者:
Daniel R McGowan
Simon R Cherry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon R Cherry', 18)}}的其他基金
Development of PET imaging biomarkers to predict enhanced glioblastoma radiotherapy by a novel H-NOX oxygen carrier
开发 PET 成像生物标志物来预测新型 H-NOX 氧载体增强的胶质母细胞瘤放疗
- 批准号:
9240463 - 财政年份:2017
- 资助金额:
$ 35.33万 - 项目类别:
Research at the interface of optical and ionizing radiation for innovative cancer imaging and therapy
用于创新癌症成像和治疗的光学和电离辐射界面研究
- 批准号:
9115570 - 财政年份:2015
- 资助金额:
$ 35.33万 - 项目类别:
Research at the interface of optical and ionizing radiation for innovative cancer imaging and therapy
用于创新癌症成像和治疗的光学和电离辐射界面研究
- 批准号:
10242140 - 财政年份:2015
- 资助金额:
$ 35.33万 - 项目类别:
Photodynamic Therapy Mediated by Cerenkov Light Emitted from Radiopharmaceut
放射性药物发出的切伦科夫光介导的光动力疗法
- 批准号:
8702867 - 财政年份:2014
- 资助金额:
$ 35.33万 - 项目类别:
A cost-effective high-performance ceramic garnet scintillator for PET
用于 PET 的经济高效的高性能陶瓷石榴石闪烁体
- 批准号:
8435109 - 财政年份:2012
- 资助金额:
$ 35.33万 - 项目类别:
A cost-effective high-performance ceramic garnet scintillator for PET
用于 PET 的经济高效的高性能陶瓷石榴石闪烁体
- 批准号:
8721957 - 财政年份:2012
- 资助金额:
$ 35.33万 - 项目类别:
Quantitative Evaluation of Cerenkov Luminescence for Imaging and Therapy
用于成像和治疗的切伦科夫发光的定量评估
- 批准号:
8342753 - 财政年份:2012
- 资助金额:
$ 35.33万 - 项目类别:
A cost-effective high-performance ceramic garnet scintillator for PET
用于 PET 的经济高效的高性能陶瓷石榴石闪烁体
- 批准号:
8554763 - 财政年份:2012
- 资助金额:
$ 35.33万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 35.33万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 35.33万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 35.33万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 35.33万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 35.33万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 35.33万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 35.33万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 35.33万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 35.33万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 35.33万 - 项目类别: