COBRE: Center for Computational Biology of Human Disease
COBRE:人类疾病计算生物学中心
基本信息
- 批准号:8813141
- 负责人:
- 金额:$ 243.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:AgeAlgorithmsBig DataBioinformaticsBiologicalBiologyBiomedical ResearchCandidate Disease GeneCenters of Research ExcellenceClinicalClinical ResearchCollaborationsCommunitiesComplexComputational BiologyDNA MethylationDataData ScienceData SetDiseaseDrosophila genusEnsureEnvironmentEpigenetic ProcessEthnic groupFacultyFosteringFundingGap JunctionsGenderGene ExpressionGenesGeneticGenomeGenomic medicineGenomicsGlioblastomaGoalsHospital DepartmentsHospitalsHumanIncidenceIndiumIndividualInfectionJointsLinkLung diseasesMathematicsMedicineMentorsMethodologyMethodsMissionModelingMotivationOutcomePatientsPharmaceutical PreparationsPre-EclampsiaProceduresResearchResearch ActivityResearch InfrastructureResearch PersonnelResearch Project GrantsResearch SupportResistanceRhode IslandScientistTestingTranscriptional RegulationUniversitiesVariantViralbasebig biomedical databiological researchcancer survivalcase controlco-infectioncohortcomputer sciencecomputer studiesdesignethnic disparityexome sequencinggender disparitygenome wide association studygenomic variationhuman diseaseinnovationinsightleukemiamedical schoolsmembermouse modelnew therapeutic targetnovelpersonalized genomic medicinepublic health relevanceresearch studyresponserisk variantscreeningsenior facultysurvival predictiontooltranscriptometranslational medicine
项目摘要
DESCRIPTION (provided by applicant): We propose to establish and build the COBRE Center for the Computational Biology of Human Disease at Brown University and affiliated hospitals. The motivation for this effort lies in the joint promise that personalized genomic medicine and novel analyses of Big Data are key elements in the identification and treatment of human disease. Sequencing a genome, a transcriptome, or even 100 of them is a routine procedure available to most researchers. However, converting these raw data into meaningful information is the new challenge generated by the progress in genomics. The underlying principle of this Center is that close collaboration between empirical and computational biologists with common challenges in the analysis of large data sets can accelerate the implementation of translational medicine. The Brown University Biomedical community is an ideal environment to achieve this goal. The close collaboration among Departments and the hospitals associated with the Warren Alpert Medical School provide the context for unifying biological and quantitative approaches to human disease. We will evolve a culture where computational and biological research is distributed within each research group. We propose an innovative joint mentoring strategy where each junior faculty member is advised by both computational and biological or clinical senior faculty members. Moreover, we will build a Core of biomedical Big Data scientists who build analysis tools common to multiple junior PIs, and collaborate directly with individual research teams. The long-term goal of the Center is to establish and grow a nexus of computational biology infrastructure for the greater Brown and hospital environments that will benefit all of Rhode Island. The objective of this proposal is to establish the infrastructure of the COBRE Center to support the research activities of Junior Investigators to ensure their transition to stand-alone R01-funded scientists. There are two Specific Aims related to the establishment of the Center, and five Research Projects spanning computational and clinical studies. Aim 1: Build the Administrative Core that will support the COBRE Center; Aim 2: Build the Biomedical Big Data Core that will support the research of Junior Investigators; Aim 3 individual research projects - Project 1: Incorporating Ethnic and Gender Disparities in Genomic Studies of Disease; Project 2: Integrative Genomics of Cancer Survival; Project 3: Tolerance of Viral/Bacterial Co-infections; Project 4: A Drug Repositioning Strategy for Healthspan Extension; Project 5: Computational Genomics of Preeclampsia.
描述(申请人提供):我们提议在布朗大学及其附属医院建立并建设COBRE人类疾病计算生物学中心。这一努力的动机在于共同承诺,个性化基因组医学和大数据的新分析是识别和治疗人类疾病的关键因素。测序一个基因组、一个转录组,甚至100个基因组,对大多数研究人员来说都是一个常规程序。然而,将这些原始数据转化为有意义的信息是基因组学进步带来的新挑战。该中心的基本原则是,经验和计算生物学家之间的密切合作,在分析大型数据集的共同挑战,可以加速转化医学的实施。布朗大学生物医学社区是实现这一目标的理想环境。与沃伦·阿尔珀特医学院相关的部门和医院之间的密切合作为统一人类疾病的生物学和定量方法提供了背景。我们将发展一种文化,在这种文化中,计算和生物研究分布在每个研究小组中。我们提出了一个创新的联合指导策略,每个初级教师都建议由计算和生物或临床高级教师。此外,我们将建立一个生物医学大数据科学家的核心,他们构建多个初级PI通用的分析工具,并直接与各个研究团队合作。该中心的长期目标是建立和发展计算生物学基础设施的大布朗和医院环境,将有利于所有的罗得岛的联系。本提案的目的是建立COBRE中心的基础设施,以支持初级研究人员的研究活动,确保他们过渡到独立的R 01资助的科学家。有两个具体目标与建立该中心有关,五个研究项目跨越计算和临床研究。目标1:建立支持COBRE中心的行政核心;目标2:建立支持初级研究人员研究的生物医学大数据核心;目标3个单独的研究项目-项目1:消除疾病基因组研究中的种族和性别差异;项目2:癌症生存的综合基因组学;项目3:病毒/细菌合并感染的耐受性;项目4:一种用于健康延伸的药物重新定位策略;项目5:先兆子痫的计算基因组学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID M RAND其他文献
DAVID M RAND的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID M RAND', 18)}}的其他基金
Mitonuclear genetics of complex traits in Drosophila
果蝇复杂性状的线粒体核遗传学
- 批准号:
10594405 - 财政年份:2021
- 资助金额:
$ 243.63万 - 项目类别:
Mitonuclear genetics of complex traits in Drosophila
果蝇复杂性状的线粒体核遗传学
- 批准号:
10377905 - 财政年份:2021
- 资助金额:
$ 243.63万 - 项目类别:
COBRE: Center for Computational Biology of Human Disease
COBRE:人类疾病计算生物学中心
- 批准号:
10461166 - 财政年份:2016
- 资助金额:
$ 243.63万 - 项目类别:
COBRE: Center for Computational Biology of Human Disease
COBRE:人类疾病计算生物学中心
- 批准号:
10271620 - 财政年份:2016
- 资助金额:
$ 243.63万 - 项目类别:
COBRE: Center for Computational Biology of Human Disease
COBRE:人类疾病计算生物学中心
- 批准号:
10681232 - 财政年份:2016
- 资助金额:
$ 243.63万 - 项目类别:
相似海外基金
Big Data Analytics: Optimization Models and Algorithms with Applications in Smart Food Supply Chains and Networks
大数据分析:优化模型和算法在智能食品供应链和网络中的应用
- 批准号:
RGPIN-2020-06792 - 财政年份:2022
- 资助金额:
$ 243.63万 - 项目类别:
Discovery Grants Program - Individual
Large Systems and Big Data: Models, Tools, Analysis, and Algorithms
大型系统和大数据:模型、工具、分析和算法
- 批准号:
RGPIN-2020-04075 - 财政年份:2022
- 资助金额:
$ 243.63万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
- 批准号:
RGPIN-2017-05785 - 财政年份:2022
- 资助金额:
$ 243.63万 - 项目类别:
Discovery Grants Program - Individual
Novel Learning-Based Visual Algorithms and Fusion Methods for High-Dimensional/Multi-Modality Big Data
基于学习的新型高维/多模态大数据视觉算法和融合方法
- 批准号:
RGPIN-2022-02948 - 财政年份:2022
- 资助金额:
$ 243.63万 - 项目类别:
Discovery Grants Program - Individual
(Re)designing Clustering Algorithms for Big Data
(重新)设计大数据聚类算法
- 批准号:
RGPIN-2017-05617 - 财政年份:2022
- 资助金额:
$ 243.63万 - 项目类别:
Discovery Grants Program - Individual
NCS-FO: Connectome mapping algorithms with application to community services for big data neuroscience
NCS-FO:连接组映射算法及其应用于大数据神经科学社区服务
- 批准号:
2203524 - 财政年份:2021
- 资助金额:
$ 243.63万 - 项目类别:
Standard Grant
Big Data Analytics: Optimization Models and Algorithms with Applications in Smart Food Supply Chains and Networks
大数据分析:优化模型和算法在智能食品供应链和网络中的应用
- 批准号:
RGPIN-2020-06792 - 财政年份:2021
- 资助金额:
$ 243.63万 - 项目类别:
Discovery Grants Program - Individual
Exploring Novel Mathematical Models and Efficient Algorithms to Discover Periodic Spatial Patterns in Irregular Spatiotemporal Big Data
探索新颖的数学模型和高效算法以发现不规则时空大数据中的周期性空间模式
- 批准号:
21K12034 - 财政年份:2021
- 资助金额:
$ 243.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comprehensive study of big data clustering algorithms
大数据聚类算法综合研究
- 批准号:
571110-2018 - 财政年份:2021
- 资助金额:
$ 243.63万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
(Re)designing Clustering Algorithms for Big Data
(重新)设计大数据聚类算法
- 批准号:
RGPIN-2017-05617 - 财政年份:2021
- 资助金额:
$ 243.63万 - 项目类别:
Discovery Grants Program - Individual