A novel strategy for arsenic phytoremediation
砷植物修复的新策略
基本信息
- 批准号:10369022
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-09 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAmendmentArsenicAssimilationsBindingBiologicalBiological AvailabilityBiomassCharacteristicsCrambe abyssinicaCulture MediaDevelopmentDrug Metabolic DetoxicationEngineeringFood ChainFutureGene ExpressionGene TransferGenesGeneticGenetic EngineeringGoalsHigh Pressure Liquid ChromatographyHumanHydroponicsInductively Coupled Plasma Mass SpectrometryInvestigationKnowledgeLaboratoriesMetalsMethodsOilsOrganOutcomePerformancePhysiological ProcessesPlant LeavesPlant RootsPlantsProcessPublic HealthRNA InterferenceRoentgen RaysSeedsSiteSoilSpectrum AnalysisStructureSulfurTestingTissuesUnited States Department of AgricultureVacuoleabsorptionarsenate reductasebasecost effectiveeffectiveness evaluationfield studyglobal healthknock-downnanoparticlenovel strategiesoverexpressionoxidationremediationscreeningsurface coatingtissue culturetoxic metaluptake
项目摘要
Project Summary:
Arsenic contamination in the food chain is a global health problem and causes damage to most human organs.
A significant need exists to develop approaches for addressing environmental arsenic. The long term goal is to
develop a plant-based phytoremediation approach for contaminated land that is cost-effective and ecologically
friendly as an alternative to conventional remediation methods. The objective of this study is to develop a
genetics-based phytoremediation strategy for arsenic uptake, translocation, detoxification, and
hyperaccumulation into the fast-growing, high biomass, non-food crop Crambe abyssinica. Nanosulfur will be
utilized to modulate the bioavailability and phytoextraction of As from soil and to increase the storage capacity
via enhanced sulfur assimilation. The engineered Crambe will be evaluated for removing arsenic from the soil in
laboratory, greenhouse, and field conditions. Our central hypothesis is that organ-specific expression of genes,
which control the transport, oxidation state, and binding of As, can be tuned to yield efficient extraction and
hyperaccumulation into above-ground plant tissues. To test our hypothesis, we propose the following specific
aims. 1) Genetically engineer Crambe abyssinica lines for co-expressing bacterial ArsC, gECS, and AtABCC1
and RNAi suppression of endogenous arsenate reductase CaACR2; 2) Evaluate the engineered Crambe lines
for metal(loids) tolerance and accumulation; 3) Synthesize and apply nanosulfur to modulate the bioavailability,
phytoextraction, and accumulation of toxic metal(loids); and 4) Conduct a pilot field study of engineered Crambe
lines for phytoextraction on a contaminated site. After initial screening in tissue culture media supplemented with
metals, the best performing quadruple gene stacked (ArcS+gECS+AtABCC1+CaACR2Ri) Crambe lines with wild
type controls will be tested using contaminated soils with arsenic as well as co-contaminants in greenhouse. A
pilot field-scale study will then be carried out at a site contaminated with arsenic. The soil will be extensively
characterized, and analysis for metal content and arsenic speciation will be determined using ICP/MS, HPLC-
ICP/MS as well as XANES (X-ray Absorption Near-Edge Spectroscopy). Last, soil amendments with engineered
nanosulfur will be used to evaluate the impacts on soil structure and contaminant availability and phytoextraction.
Nanosulfur will also be foliarly applied to plants to increase the metal storage capacity via enhanced sulfur
assimilation. The expected outcome of this project is a mechanistic understanding of the biogeochemical and
plant processes of arsenic remediation that connects key soil characteristics with the efficiency of phytoextraction
and hyperaccumulation of arsenic. The results will have an immediate and important positive impact because
the knowledge generated from this study will enable efficient and effective phytoremediation approaches to
minimize or remove arsenic contamination in the food chain and enhance public health.
项目摘要:
食物链中的砷污染是一个全球健康问题,会损害大多数人体器官。
存在着重要的需求,以开发解决环境砷的方法。长期目标是
为受污染的土地开发基于植物的植物修复方法,该方法具有成本效益和生态上
友好作为常规补救方法的替代方案。这项研究的目的是开发
基于遗传学的植物修复策略,用于砷摄取,易位,排毒和
高积累到快速增长的高生物量,非食物作物crambe byssinica。纳米硫将是
用于调节AS的生物利用度和植物萃取,并增加存储容量
通过增强的硫同化。将评估工程的Crambe,以从土壤中去除砷
实验室,温室和田间条件。我们的中心假设是基因的器官特异性表达,
可以调节哪些控制运输,氧化态和AS的结合,以产生有效的提取和
高积累到地上植物组织中。为了检验我们的假设,我们提出以下特定
目标。 1)基因工程师Crambe Abyssinica线,用于共表达细菌ARSC,GEC和ATABCC1
RNAi抑制内源性砷还原酶CAACR2; 2)评估工程的crambe线
用于金属(薄片)耐受性和积累; 3)合成并应用纳米硫以调节生物利用度,
植物萃取和有毒金属的积累(片状); 4)进行工程crambe的试点现场研究
在受污染的部位上进行植物萃取的线。在补充的组织培养基中进行了初步筛选后
金属,表现最好的四倍体基因堆叠(ARCS+GECS+ATABCC1+CAACR2RI)CRAMBE线与野生
类型控件将使用温室中的砷和联合征收的污染土壤进行测试。一个
然后,将在被砷污染的地点进行试点尺度研究。土壤将广泛
特征是金属含量和砷形成的分析,将使用ICP/MS,HPLC-确定
ICP/MS以及XANES(X射线吸收近边光谱法)。最后,用工程的土壤修改
纳米硫将用于评估对土壤结构和污染物的可用性和植物萃取的影响。
纳米硫也将用于植物上,以通过增强的硫来增加金属存储能力
同化。该项目的预期结果是对生物地球化学和
将关键土壤特征与植物萃取效率联系起来的砷补救植物过程
和砷的高积累。结果将产生直接和重要的积极影响,因为
这项研究产生的知识将使有效有效的植物修复方法
最小化或消除食物链中的砷污染并增强公共卫生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Om Parkash Dhankher其他文献
Om Parkash Dhankher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Om Parkash Dhankher', 18)}}的其他基金
相似国自然基金
基加利修正案背景下我国建筑部门的协同减排效益及路径研究
- 批准号:72204017
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基加利修正案背景下我国建筑部门的协同减排效益及路径研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The UNC Chapel Hill Superfund Research Program (UNC-SRP)
北卡罗来纳大学教堂山超级基金研究计划 (UNC-SRP)
- 批准号:
10797455 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Bioinspired Green Glycolipids as Fugitive Dust Mitigation Agents
仿生绿色糖脂作为扬尘减排剂
- 批准号:
10484307 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别: