Elucidating the Mechanisms of S. aureus Motility in Bone and Developing Interventions
阐明金黄色葡萄球菌在骨中的运动机制并制定干预措施
基本信息
- 批准号:10402966
- 负责人:
- 金额:$ 35.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-20 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:3D PrintAdhesionsAdjuvantAntibiotic TherapyAntibioticsAntimicrobial ResistanceBacteriaBacterial AdhesinsBiological ProcessCandidate Disease GeneCell WallCell divisionChemicalsChronicClinicalCommunitiesCuesDiseaseDoseFundingGene ExpressionGene Expression RegulationGenesGenetic DeterminismGenomicsHospitalsImmune EvasionImplantIn VitroInfectionInterventionInvadedLibrariesLocal TherapyMembraneMethodsMicrofluidicsMinimum Inhibitory Concentration measurementModelingMolecularMolecular GeneticsMusMusculoskeletalOperative Surgical ProceduresOsteocytesOsteomyelitisOutcomePathway interactionsPatientsPenicillin Binding Protein 4PeptidoglycanPeptidyltransferasePolymethyl MethacrylateProcessProphylactic treatmentProteinsRefractoryReplacement ArthroplastyRodRoleSiliconSpecificityStaphylococcus aureusStaphylococcus aureus infectionSurfaceSystemic TherapyTechniquesTestingTherapeuticTranslational ResearchTranslationsVancomycinWorkantibiotic tolerancebasebonebone healingcell motilitycellular targetingchronic infectioncortical bonecostdesignefficacy validationhigh throughput screeningin vivoinhibitormethicillin resistant Staphylococcus aureusmicrobialmicrochipmouse modelmutantnanomembranenovelnovel therapeutic interventionosteoimmunologyprogramsrecurrent infectionresistance mechanismresponsescaffoldscreeningsmall moleculesmall molecule inhibitorsubmicrontherapeutic candidatetranscriptome sequencingtranslational impact
项目摘要
Staphylococcus aureus is involved in 80% of all musculoskeletal infections (MSKI) costing $17,000–$150,000
per patient. Approximately 50% of these infections are caused by methicillin-resistant S. aureus (MRSA)
acquired in both hospital and community. With >1.5 million total joint replacements (TJR) performed each
year, the most rigorous prophylaxis and aseptic surgical techniques cannot reduce osteomyelitis (OM) rates
below 0.5%–2%. Treating established MSKI remains extremely challenging, with current rates of recurrent or
persistent infection following revision surgery still as high as 33%. The persistence of S. aureus infection is
attributed to its arsenal of immune evasion and antimicrobial resistance mechanisms. Despite great efforts to
develop solutions, treatment paradigms have not improved the poor clinical outcomes for OM patients over the
last four decades. However, our CoRTOBI paradigm-shifting discovery of S. aureus colonization of the
osteocyte lacuno-canalicular network (OLCN) of live cortical bone during OM in mice and patients may explain
why previous approaches for treating recurring bone infections have failed, and provide a new therapeutic
strategy for eliminating chronic OM. It also begs important questions about the mechanisms that: 1) enable
spherical S. aureus to deform into submicron-rod shaped bacteria to invade the OLCN, and 2) render
susceptible S. aureus strains refractory to antibiotics after OLCN invasion. Over the past four years we
developed a novel bone infection-on-chip utilizing silicon nanomembrane with submicron (~500 nm) array of
pores to simulate OLCN orifices (µSiM-CA). By targeted deletion of candidate genes, we identified cell wall
transpeptidase proteins, penicillin binding protein 4 (Pbp4), as essential for S. aureus propagation through
submicron channels of the µSiM-CA chips in vitro and then demonstrated that they inhibit OLCN colonization in
vivo. Moreover, we developed and performed a high throughput screening campaign to identify PBP4 inhibitors
(iPBP4). In this renewal, we will first demonstrate the efficacy of PBP4 small molecule inhibitors (iPBP4) in
abrogating the OLCN invasion in mouse models of osteomyelitis. We will then identify targets for OM therapy
based on gene expression changes that affords S. aureus adaptive tolerance to antibiotics in a novel µSiM-
OLCN Chip platform. Finally, we will test the premise that OLCN colonization likely involves many additional
factors other than PBP4, and that other chemical classes of OLCN colonization inhibitors can be identified by
empirically defining the genetic determinants. These potential targets can then be used to identify
corresponding putative therapeutics in a single screening approach. At the completion of this renewal program,
CoRTOBI will have: 1) validated recently discovered iPBP4 candidates and potentially new PBP-independent
hits against OLCN colonization, 2) a molecular genetic understanding of S. aureus refractory response to
antibiotics following OLCN colonization, and 3) translational methods for iPBP4 impregnated 3D-printed
scaffolds in one-stage revision surgery for bone infections.
金黄色葡萄球菌涉及所有肌肉骨骼感染(MSKI)的80%,费用为$ 17,000- $ 150,000
每个患者。这些感染中约有50%是由金黄色葡萄球菌(MRSA)引起的
在医院和社区中获得。 > 150万的总置换量(TJR)执行了
一年,最严格的预防和无菌外科手术技术无法降低骨髓炎(OM)率
低于0.5%–2%。当前的经常性率或
修订手术后的持续感染仍然高达33%。金黄色葡萄球菌感染的持久性是
归因于其免疫进化和抗菌耐药机制的武器库。尽管做出了巨大的努力
开发解决方案,治疗范例并没有改善OM患者的临床结果不佳
最近四十年。但是,我们的Cortobi范式转移发现了金黄色葡萄球菌殖民
OM在小鼠中,活皮质骨的骨细胞lacuno-canalicular网络(OLCN),患者可能会解释
为什么以前治疗重复骨感染的方法失败了,并提供了一种新的疗法
消除慢性OM的策略。它还提出了有关以下机制的重要问题:1)启用
球形金黄色葡萄球菌变形为亚微米杆形细菌以侵入OLCN,2)渲染
OLCN入侵后,敏感的金黄色葡萄球菌菌株对抗生素难治性。在过去的四年中
开发了一种新型的片骨感染,利用硅纳米膜和亚微米(〜500 nm)阵列
孔以模拟OLCN孔(µSIM-CA)。通过针对候选基因的靶向缺失,我们确定了细胞壁
转肽酶蛋白,青霉素结合蛋白4(PBP4),对于金黄色葡萄球菌传播至关重要
µSIM-CA芯片的亚微米通道在体外,然后证明它们抑制了OLCN定植
体内。此外,我们开发并进行了高吞吐量筛选活动,以识别PBP4抑制剂
(IPBP4)。在此续签中,我们将首先证明PBP4小分子抑制剂(IPBP4)在
废除骨髓炎小鼠模型中的OLCN侵袭。然后,我们将确定OM治疗的目标
基于基因表达变化,在新型µSIM-中具有金黄色葡萄球菌自适应耐受性
OLCN芯片平台。最后,我们将测试OLCN殖民化可能涉及许多其他的前提
PBP4以外的其他因素,其他化学类别的OLCN定殖抑制剂可以通过
从经验上定义遗传决定剂。然后可以使用这些潜在目标来识别
在单个筛选方法中相应的推定理论。在完成此续签计划时,
Cortobi将有:1)最近发现的IPBP4候选物以及潜在的不依赖PBP的验证
对OLCN定植的命中,2)对金黄色葡萄球菌难治反应的分子遗传理解
OLCN定殖后的抗生素和3)IPBP4的翻译方法浸渍了3D打印
骨骼感染的一阶段翻修手术中的脚手架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hani A Awad其他文献
Hani A Awad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hani A Awad', 18)}}的其他基金
Training in Musculoskeletal Science: Comprehensive Training in Pain Studies
肌肉骨骼科学培训:疼痛研究综合培训
- 批准号:
10853550 - 财政年份:2023
- 资助金额:
$ 35.97万 - 项目类别:
Biomechanics, Biomaterials and Multimodal Tissue Imaging Core (BBMTI Core)
生物力学、生物材料和多模态组织成像核心(BBMTI 核心)
- 批准号:
10232836 - 财政年份:2022
- 资助金额:
$ 35.97万 - 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing
用于药物筛选和疗效测试的肌腱炎症和纤维化的微生理系统
- 批准号:
10515790 - 财政年份:2020
- 资助金额:
$ 35.97万 - 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing: MPS Database Engagement
用于药物筛选和功效测试的肌腱炎症和纤维化的微生理系统:MPS 数据库参与
- 批准号:
10430792 - 财政年份:2020
- 资助金额:
$ 35.97万 - 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing
用于药物筛选和疗效测试的肌腱炎症和纤维化的微生理系统
- 批准号:
10239102 - 财政年份:2020
- 资助金额:
$ 35.97万 - 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing
用于药物筛选和疗效测试的肌腱炎症和纤维化的微生理系统
- 批准号:
10674534 - 财政年份:2020
- 资助金额:
$ 35.97万 - 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing
用于药物筛选和疗效测试的肌腱炎症和纤维化的微生理系统
- 批准号:
10037991 - 财政年份:2020
- 资助金额:
$ 35.97万 - 项目类别:
Project 1: Elucidating the Mechanisms of S. aureus Motility in Bone and Developing Interventions
项目 1:阐明金黄色葡萄球菌在骨中的运动机制并制定干预措施
- 批准号:
10247795 - 财政年份:2017
- 资助金额:
$ 35.97万 - 项目类别:
相似国自然基金
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
- 批准号:82370515
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
- 批准号:82360301
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活血通腑方调控NETs干预术后腹腔粘连组织纤维化新途径研究
- 批准号:82374466
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Project 1: Neutralizing and decolonizing Clostridioides difficile using mRNA vaccines
项目 1:使用 mRNA 疫苗对艰难梭菌进行中和和去定植
- 批准号:
10625577 - 财政年份:2023
- 资助金额:
$ 35.97万 - 项目类别:
Investigation of novel chlamydia vaccines in male infection models and sexual transmission challenges
新型衣原体疫苗在男性感染模型和性传播挑战中的研究
- 批准号:
10750828 - 财政年份:2023
- 资助金额:
$ 35.97万 - 项目类别:
Defining therapeutic strategies for boosting T-cell infiltration into cold tumors with spatial proteomics and machine learning
利用空间蛋白质组学和机器学习确定促进 T 细胞浸润冷肿瘤的治疗策略
- 批准号:
10743501 - 财政年份:2023
- 资助金额:
$ 35.97万 - 项目类别:
Investigating the Ability of Human Blood Neutrophils to Kill Cancer
研究人类血液中性粒细胞杀死癌症的能力
- 批准号:
10648774 - 财政年份:2023
- 资助金额:
$ 35.97万 - 项目类别:
Critical role for Solute Carrier Proteins (SLCs) for mast cell function
溶质载体蛋白 (SLC) 对肥大细胞功能的关键作用
- 批准号:
10537469 - 财政年份:2022
- 资助金额:
$ 35.97万 - 项目类别: