A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing
用于药物筛选和疗效测试的肌腱炎症和纤维化的微生理系统
基本信息
- 批准号:10515790
- 负责人:
- 金额:$ 74.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcuteAdhesionsAntibodiesBiologicalBiological AssayBiological MarkersBiological ModelsBlood CirculationBlood TestsBlood VesselsBlood flowCell Cycle RegulationCellsChronicCicatrixClinicalClinical TrialsCollagenComplexConfocal MicroscopyConnective and Soft TissueCrystallizationDetectionDevicesDiseaseDisease modelDoseDrug ScreeningEndothelial CellsEndotheliumEngineeringEnzyme-Linked Immunosorbent AssayEvaluationExtracellular MatrixExtravasationFDA approvedFRAP1 geneFibroblastsFibrosisFlexorGamma-H2AXGene set enrichment analysisGoalsHealthHumanHydrogelsImageImmunologyImpairmentIn SituInfiltrationInflammationInflammation MediatorsInflammatoryIntervention TrialLabelLibrariesLinkLiquid substanceMeasurementMeasuresMechanicsMediatingMembraneMicrofluidic MicrochipsMicrofluidicsMicroscopicMicroscopyMolecularMusMusculoskeletalMyofibroblastNanoporousOperative Surgical ProceduresOpticsOutcomePI3K/AKTParacrine CommunicationPathologyPatientsPeriodicityPermeabilityPharmaceutical PreparationsPhasePhenotypeProceduresProcessProteinsPublishingReplacement ArthroplastyRoleSDZ RADSafetySamplingSensitivity and SpecificitySerumSideSignal TransductionSiliconSirolimusSpinal FusionSystemTendinopathyTendon InjuriesTendon structureTestingTherapeuticTimeTissue EngineeringTissuesTransforming Growth Factor betaTranslatingVascular Endothelial Cellbasebiological developmentcell motilityclinically relevantdesigndrug candidatedrug discoverydrug efficacydruggable targetefficacy evaluationefficacy testingexperiencehealinghigh throughput screeninghuman tissueimprovedinduced pluripotent stem cellinduced pluripotent stem cell technologyinhibitorinjuredinnovationintercellular communicationjoint functionmTOR Inhibitormacrophagemicrophysiology systemmicroscopic imagingmouse modelnanonanofabricationnext generation sequencingorgan on a chipphotonicspreclinical trialprimary outcomeregenerative therapyrepairedsecondary outcomesenescencesensorsensor technologyvirtual clinical trial
项目摘要
Acute and chronic tendon injuries are among the most common musculoskeletal health problems. Typically, an
injured tendon experiences fibrotic scarring that leaves the tissue mechanically compromised and prone to
debilitating adhesions that impair joint function. In a fibrotic tendon scar, the cell-cell and paracrine signaling
between inflammatory cells, such as macrophages, and tendon fibroblasts activate the latter into
fibroproliferative myofibroblasts, ultimately differentiating into a senescent phenotype. Our previous studies
using next-generation sequencing and gene set enrichment analysis mechanistically linked fibrosis and
senescence in injured mouse tendons with TGF-beta activated mTOR signaling. To further elucidate this
pathology, the goal of this proposal is to engineer a microfluidic human tendon-on-chip (hToC) system and use
it to more accurately model the biological aspects of the inflammation and fibrosis in injured tendons. In the
UG3 phase of this proposal, the chip will be fabricated featuring a multicompartmental design and microfluidic
channels to incorporate a fibroblast-seeded collagen hydrogel and simulate vascular blood flow, respectively.
Ultrathin, highly permeable, and optically transparent porous silicon membranes (SiM) will separate the
hydrogel from circulation and provide a substrate for an endothelial barrier in between. The signaling between
the fibroblasts, hydrogel-resident- and circulating-macrophages, and endothelial cells will be enabled through
nanoporous SiM (~60 nm), while a microporous SiM (~ 8 µm) will allow extravasation of circulating
macrophages and infiltration of the hydrogel under TGF-beta stimulation. To allow for a patient-centric chip,
tendon fibroblasts will be used to create the tendon hydrogel and to reprogram donor-matching iPSCs to derive
the endothelial cells and macrophages, respectively. An additional innovation will be the integration of label-
free photonic sensors into the microfluidic device to allow on-chip sensing, which has been long appreciated as
a critical, unmet need for organ-on-chip devices. The UG3 studies will use the chip to validate the role of
mTOR in the disease model and identify biologically relevant biomarkers. In the UH3 phase, we will utilize the
chip as a pre-clinical trial platform for testing efficacy and safety of FDA-approved mTOR inhibitors as potential
disease modifying drugs, and as a drug screening platform to identify and prioritize safer and more potent
inhibitors of mTOR and senescence in tendon injury for clinical trials. To successfully complete this innovative
project, we have assembled a team of accomplished experts in tendon tissue engineering and surgery,
immunology, iPSC technology, GMP cell manufacturing, nano- and micro-fabrication, sensor technology, and
high throughput screening. The proposed studies will develop a human microphysiological system to catalyze
clinical trials and accelerate drug discovery for acute and chronic tendon injuries.
急性和慢性肌腱损伤是最常见的肌肉骨骼健康问题。通常,一个
受伤的肌腱会形成纤维化疤痕,使组织机械受损并容易发生
削弱关节功能的粘连。在纤维化肌腱疤痕中,细胞间和旁分泌信号传导
炎症细胞(例如巨噬细胞)和肌腱成纤维细胞之间的相互作用激活后者
纤维增殖性肌成纤维细胞,最终分化为衰老表型。我们之前的研究
使用下一代测序和基因集富集分析在机制上关联纤维化和
TGF-β 激活 mTOR 信号传导导致小鼠损伤肌腱衰老。为了进一步阐明这一点
病理学,该提案的目标是设计微流体人体腱芯片(hToC)系统并使用
它可以更准确地模拟受伤肌腱炎症和纤维化的生物学方面。在
该提案的 UG3 阶段,该芯片将采用多室设计和微流控技术制造
通道分别掺入成纤维细胞种子胶原水凝胶和模拟血管血流。
超薄、高渗透性和光学透明的多孔硅膜 (SiM) 将分离
水凝胶从循环中分离出来,并为其间的内皮屏障提供基质。之间的信令
成纤维细胞、水凝胶驻留巨噬细胞和循环巨噬细胞以及内皮细胞将通过
纳米多孔 SiM (~60 nm),而微孔 SiM (~ 8 µm) 将允许循环液外渗
TGF-β刺激下的巨噬细胞和水凝胶的浸润。为了实现以患者为中心的芯片,
肌腱成纤维细胞将用于创建肌腱水凝胶并重新编程与供体匹配的 iPSC 以衍生
分别为内皮细胞和巨噬细胞。另一项创新将是标签的集成
将光子传感器免费插入微流体装置中以实现片上传感,这长期以来一直被认为是
对片上器官设备的关键、未满足的需求。 UG3研究将使用该芯片来验证
mTOR 在疾病模型中的应用并识别生物学相关的生物标志物。在UH3阶段,我们将利用
芯片作为临床前试验平台,用于测试 FDA 批准的 mTOR 抑制剂的功效和安全性
疾病缓解药物,并作为药物筛选平台来识别和优先考虑更安全、更有效的药物
mTOR 抑制剂和肌腱损伤衰老的临床试验。为顺利完成这一创新
项目中,我们组建了一支由肌腱组织工程和外科领域卓有成效的专家组成的团队,
免疫学、iPSC 技术、GMP 细胞制造、纳米和微米制造、传感器技术以及
高通量筛选。拟议的研究将开发一种人体微生理系统来催化
临床试验并加速治疗急性和慢性肌腱损伤的药物发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hani A Awad其他文献
Hani A Awad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hani A Awad', 18)}}的其他基金
Training in Musculoskeletal Science: Comprehensive Training in Pain Studies
肌肉骨骼科学培训:疼痛研究综合培训
- 批准号:
10853550 - 财政年份:2023
- 资助金额:
$ 74.04万 - 项目类别:
Biomechanics, Biomaterials and Multimodal Tissue Imaging Core (BBMTI Core)
生物力学、生物材料和多模态组织成像核心(BBMTI 核心)
- 批准号:
10232836 - 财政年份:2022
- 资助金额:
$ 74.04万 - 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing: MPS Database Engagement
用于药物筛选和功效测试的肌腱炎症和纤维化的微生理系统:MPS 数据库参与
- 批准号:
10430792 - 财政年份:2020
- 资助金额:
$ 74.04万 - 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing
用于药物筛选和疗效测试的肌腱炎症和纤维化的微生理系统
- 批准号:
10239102 - 财政年份:2020
- 资助金额:
$ 74.04万 - 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing
用于药物筛选和疗效测试的肌腱炎症和纤维化的微生理系统
- 批准号:
10674534 - 财政年份:2020
- 资助金额:
$ 74.04万 - 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing
用于药物筛选和疗效测试的肌腱炎症和纤维化的微生理系统
- 批准号:
10037991 - 财政年份:2020
- 资助金额:
$ 74.04万 - 项目类别:
Project 1: Elucidating the Mechanisms of S. aureus Motility in Bone and Developing Interventions
项目 1:阐明金黄色葡萄球菌在骨中的运动机制并制定干预措施
- 批准号:
10247795 - 财政年份:2017
- 资助金额:
$ 74.04万 - 项目类别:
Elucidating the Mechanisms of S. aureus Motility in Bone and Developing Interventions
阐明金黄色葡萄球菌在骨中的运动机制并制定干预措施
- 批准号:
10402966 - 财政年份:2017
- 资助金额:
$ 74.04万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 74.04万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 74.04万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 74.04万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 74.04万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 74.04万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 74.04万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 74.04万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 74.04万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 74.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 74.04万 - 项目类别:
Operating Grants














{{item.name}}会员




