A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing
用于药物筛选和疗效测试的肌腱炎症和纤维化的微生理系统
基本信息
- 批准号:10239102
- 负责人:
- 金额:$ 75.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAdhesionsAntibodiesBiologic DevelopmentBiologicalBiological AssayBiological MarkersBiological ModelsBlood CirculationBlood TestsBlood VesselsBlood flowCell Cycle RegulationCellsChronicCicatrixClinicalClinical TrialsCollagenComplexConfocal MicroscopyConnective and Soft TissueCrystallizationDetectionDevicesDiseaseDisease modelDoseDrug ScreeningEndothelial CellsEndotheliumEngineeringEnzyme-Linked Immunosorbent AssayEvaluationExtracellular MatrixExtravasationFDA approvedFRAP1 geneFibroblastsFibrosisFlexorGamma-H2AXGene set enrichment analysisGoalsHealthHumanHydrogelsImageImmunologyImpairmentIn SituInfiltrationInflammationInflammation MediatorsInflammatoryIntervention TrialLabelLibrariesLinkLiquid substanceMeasurementMeasuresMechanicsMediatingMembraneMicrofluidic MicrochipsMicrofluidicsMicroscopicMicroscopyMolecularMusMusculoskeletalMyofibroblastNanoporousOperative Surgical ProceduresOpticsOutcomePI3K/AKTParacrine CommunicationPathologyPatientsPeriodicityPermeabilityPharmaceutical PreparationsPhasePhenotypeProceduresProcessProteinsPublishingReplacement ArthroplastyRoleSDZ RADSafetySamplingSensitivity and SpecificitySerumSideSignal TransductionSiliconSirolimusSpinal FusionSystemTendinopathyTendon InjuriesTendon structureTestingTherapeuticTimeTissue EngineeringTissuesTransforming Growth Factor betaTranslatingVascular Endothelial Cellbasecell motilityclinically relevantdesigndrug candidatedrug discoverydrug efficacydruggable targetefficacy evaluationefficacy testingexperiencehealinghigh throughput screeninghuman tissueimprovedinduced pluripotent stem cellinduced pluripotent stem cell technologyinhibitor/antagonistinjuredinnovationintercellular communicationjoint functionmTOR Inhibitormacrophagemicrophysiology systemmicroscopic imagingmouse modelnanonanofabricationnext generation sequencingorgan on a chipphotonicspreclinical trialprimary outcomeregenerative therapyrepairedsecondary outcomesenescencesensorsensor technologyvirtual clinical trial
项目摘要
Acute and chronic tendon injuries are among the most common musculoskeletal health problems. Typically, an
injured tendon experiences fibrotic scarring that leaves the tissue mechanically compromised and prone to
debilitating adhesions that impair joint function. In a fibrotic tendon scar, the cell-cell and paracrine signaling
between inflammatory cells, such as macrophages, and tendon fibroblasts activate the latter into
fibroproliferative myofibroblasts, ultimately differentiating into a senescent phenotype. Our previous studies
using next-generation sequencing and gene set enrichment analysis mechanistically linked fibrosis and
senescence in injured mouse tendons with TGF-beta activated mTOR signaling. To further elucidate this
pathology, the goal of this proposal is to engineer a microfluidic human tendon-on-chip (hToC) system and use
it to more accurately model the biological aspects of the inflammation and fibrosis in injured tendons. In the
UG3 phase of this proposal, the chip will be fabricated featuring a multicompartmental design and microfluidic
channels to incorporate a fibroblast-seeded collagen hydrogel and simulate vascular blood flow, respectively.
Ultrathin, highly permeable, and optically transparent porous silicon membranes (SiM) will separate the
hydrogel from circulation and provide a substrate for an endothelial barrier in between. The signaling between
the fibroblasts, hydrogel-resident- and circulating-macrophages, and endothelial cells will be enabled through
nanoporous SiM (~60 nm), while a microporous SiM (~ 8 µm) will allow extravasation of circulating
macrophages and infiltration of the hydrogel under TGF-beta stimulation. To allow for a patient-centric chip,
tendon fibroblasts will be used to create the tendon hydrogel and to reprogram donor-matching iPSCs to derive
the endothelial cells and macrophages, respectively. An additional innovation will be the integration of label-
free photonic sensors into the microfluidic device to allow on-chip sensing, which has been long appreciated as
a critical, unmet need for organ-on-chip devices. The UG3 studies will use the chip to validate the role of
mTOR in the disease model and identify biologically relevant biomarkers. In the UH3 phase, we will utilize the
chip as a pre-clinical trial platform for testing efficacy and safety of FDA-approved mTOR inhibitors as potential
disease modifying drugs, and as a drug screening platform to identify and prioritize safer and more potent
inhibitors of mTOR and senescence in tendon injury for clinical trials. To successfully complete this innovative
project, we have assembled a team of accomplished experts in tendon tissue engineering and surgery,
immunology, iPSC technology, GMP cell manufacturing, nano- and micro-fabrication, sensor technology, and
high throughput screening. The proposed studies will develop a human microphysiological system to catalyze
clinical trials and accelerate drug discovery for acute and chronic tendon injuries.
急性和慢性肌腱损伤是最常见的肌肉骨骼健康问题之一。通常,一个
受伤的肌腱会经历纤维性疤痕,使组织机械受损,并容易
损害关节功能的衰弱粘连。在纤维性肌腱瘢痕中,细胞-细胞和旁分泌信号
在炎症细胞,如巨噬细胞和肌腱成纤维细胞之间,激活后者进入
纤维增生性肌成纤维细胞,最终分化为衰老表型。我们之前的研究
使用下一代测序和基因集浓缩分析机制相关的纤维化和
转化生长因子-β激活的mTOR信号在损伤的小鼠肌腱中的衰老。为了进一步阐明这一点
病理学,这项提议的目标是设计一种微流控人体肌腱芯片(HToC)系统并使用
它可以更准确地模拟损伤肌腱的炎症和纤维化的生物学方面。在
这项建议的UG3阶段,将制造的芯片具有多分区设计和微流控
分别加入成纤维细胞种植的胶原水凝胶和模拟血管血流的通道。
超薄、高渗透性和光学透明的多孔硅膜(SIM)将把
水凝胶从循环中释放,并为介于两者之间的内皮屏障提供底物。之间的信令
成纤维细胞、水凝胶驻留和循环中的巨噬细胞以及内皮细胞将通过
纳米孔SIM(~60 nm),而微孔SIM(~8微米)将允许循环外渗
在转化生长因子-β刺激下,巨噬细胞和水凝胶的渗透。为了实现以患者为中心的芯片,
肌腱成纤维细胞将被用来产生肌腱水凝胶,并对供体匹配的IPSCs进行重新编程,以获得
分别为内皮细胞和巨噬细胞。另一项创新将是Label-
在微流控器件中加入自由光子传感器以实现片上传感,这一直被认为是
对芯片上器官设备的关键的、未得到满足的需求。UG3的研究将使用该芯片来验证
MTOR在疾病模型中的作用,并确定与生物相关的生物标志物。在UH3阶段,我们将利用
芯片作为临床前试验平台测试FDA批准的mTOR抑制剂的有效性和安全性
疾病修饰药物,并作为药物筛选平台,识别和优先考虑更安全和更有效的药物
肌腱损伤中mTOR和衰老的抑制剂进行临床试验。要成功完成这一创新
项目,我们已经组建了一支在肌腱组织工程和外科手术方面经验丰富的专家团队,
免疫学,IPSC技术,GMP细胞制造,纳米和微型制造,传感器技术,以及
高通量筛选。拟议中的研究将开发一种人体微生理系统来催化
临床试验和加速急、慢性肌腱损伤的药物发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hani A Awad其他文献
Hani A Awad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hani A Awad', 18)}}的其他基金
Training in Musculoskeletal Science: Comprehensive Training in Pain Studies
肌肉骨骼科学培训:疼痛研究综合培训
- 批准号:
10853550 - 财政年份:2023
- 资助金额:
$ 75.53万 - 项目类别:
Biomechanics, Biomaterials and Multimodal Tissue Imaging Core (BBMTI Core)
生物力学、生物材料和多模态组织成像核心(BBMTI 核心)
- 批准号:
10232836 - 财政年份:2022
- 资助金额:
$ 75.53万 - 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing
用于药物筛选和疗效测试的肌腱炎症和纤维化的微生理系统
- 批准号:
10515790 - 财政年份:2020
- 资助金额:
$ 75.53万 - 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing: MPS Database Engagement
用于药物筛选和功效测试的肌腱炎症和纤维化的微生理系统:MPS 数据库参与
- 批准号:
10430792 - 财政年份:2020
- 资助金额:
$ 75.53万 - 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing
用于药物筛选和疗效测试的肌腱炎症和纤维化的微生理系统
- 批准号:
10674534 - 财政年份:2020
- 资助金额:
$ 75.53万 - 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing
用于药物筛选和疗效测试的肌腱炎症和纤维化的微生理系统
- 批准号:
10037991 - 财政年份:2020
- 资助金额:
$ 75.53万 - 项目类别:
Project 1: Elucidating the Mechanisms of S. aureus Motility in Bone and Developing Interventions
项目 1:阐明金黄色葡萄球菌在骨中的运动机制并制定干预措施
- 批准号:
10247795 - 财政年份:2017
- 资助金额:
$ 75.53万 - 项目类别:
Elucidating the Mechanisms of S. aureus Motility in Bone and Developing Interventions
阐明金黄色葡萄球菌在骨中的运动机制并制定干预措施
- 批准号:
10402966 - 财政年份:2017
- 资助金额:
$ 75.53万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 75.53万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 75.53万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 75.53万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 75.53万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 75.53万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 75.53万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 75.53万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 75.53万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 75.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 75.53万 - 项目类别:
Standard Grant