Project 1: Elucidating the Mechanisms of S. aureus Motility in Bone and Developing Interventions
项目 1:阐明金黄色葡萄球菌在骨中的运动机制并制定干预措施
基本信息
- 批准号:10247795
- 负责人:
- 金额:$ 15.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-20 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAmericanAmputationAntibioticsBacteriaBiological AssayBone MatrixCaliberCandidate Disease GeneCellsCessation of lifeChronicClinicalCuesCustomDebridementEffectivenessEnzymesEuropeanExtracellular MatrixForeign BodiesGenerationsGenesGeneticGenetic ScreeningGenus staphylococcusHumanImageIn VitroInfectionInterventionJoint ProsthesisKineticsKnowledgeLeadLeukocytesLibrariesMediatingMembraneMicrobial BiofilmsMitoticModelingMorphogenesisMusNanoporousNatureOperative Surgical ProceduresOrganismOrthopedicsOsteomyelitisOsteotomyPathogenicityPatientsPhenotypeProcessProtein BiosynthesisProteinsRNA chemical synthesisReplacement ArthroplastyRodSafetyShelter facilitySideSiliconStaphylococcus aureusStaphylococcus aureus infectionTestingTissue EngineeringTranslational ResearchTransmission Electron Microscopyantimicrobialbasebonecase controlcell motilitycombinatorialconfocal imagingcortical bonedaughter celldesignhigh throughput screeningin vivoinhibitor/antagonistinnovationinterdisciplinary approachjoint infectionlead candidatemethicillin resistant Staphylococcus aureusmicrobial genomicsmigrationmouse modelmutantnanoporenew therapeutic targetnovelnovel therapeuticsosteoimmunologyscreeningsepticsmall moleculesoft tissuesubmicrontransposon sequencing
项目摘要
ABSTRACT
Prosthetic joint infection (PJI), the vast majority of which is caused by Staphylococcal species, is the bane of
elective total joint replacement surgery. The pathogenic mechanisms responsible for the unique problems of
PJI, which render these infections incurable, remain largely unknown. To address this gap in knowledge, we
performed extensive transmission electron microscopy (TEM) studies that uncovered novel, previously
unreported mechanisms of S. aureus colonization of canaliculi and submicron cracks in cortical bone. Our
novel observations suggest, counter to the well-accepted dogma, that S. aureus must have motility
mechanisms that allow it to identify canaliculi and submicron cracks by geometric and rigidity cues from the 3D
extracellular matrix of bone, and subsequently deform from spherical cocci into rod shaped bacteria that propel
its mitotic progeny through asymmetric septal planes through the submicron canaliculi. This mechanism
shelters the S. aureus in these submicron cracks and canaliculi such that leukocytes become incapable of
reaching them. This also likely limits the effectiveness of antimicrobials and renders the infection incurable.
Thus, our global hypothesis is that S. aureus utilizes haptotaxis and durotaxis (directional mobility guided by
geometric and rigidity cues from the 3D extracellular matrix, respectively), to incurably colonize canaliculi and
submicron channels in cortical bone. In this application, we take innovative genetic and small molecule
screening approaches to design new generations of antimicrobials that inhibit haptotaxis- and durotaxis-
mediated colonization of cortical bone. In Aim 1, we use innovative nanoporous silicon membrane transwell
chambers to define kinetics of occupancy and migration of S. aureus through submicron channels ex vivo, to
simulate in vivo haptotaxis and durotaxis through canaliculi. We also propose to complete a case-control
clinical correlate study documenting S. aureus colonization of microcracks and osteocytic-canalicular networks
of infected human cortical bone. In Aim 2, we take a focused candidate gene analysis and non-biased de novo
genetic screens, with complementary empiric TnSeq mutant library screen approach to identify S. aureus
genes involved in canalicular invasion and migration. In Aim 3, we propose to develop 3D-printed spacers
infused with novel antibiotics, that target essential enzymes for RNA and protein synthesis in biofilm-
associated bacteria or essential proteins involved in haptotaxis and durotaxis, to demonstrate the efficacy of
single-stage revision of septic femoral plates in an established OM murine model. The multidisciplinary
approach, encompassing tissue engineering and 3D printing, microbial genomics, and high throughput
screening of small molecule antimicrobials, will provide critical information needed to solve the significant
clinical problems of bone infection by formally understanding this process, identifying novel drug targets, and
exploring the potential of localized delivery using 3D-printed antibiotic-impregnated spacers for single-stage
revision surgery.
摘要
人工关节感染(PJI),其中绝大多数是由葡萄球菌引起的,
择期全关节置换手术致病机制负责的独特问题,
PJI使这些感染无法治愈,在很大程度上仍然未知。为了填补这一知识空白,我们
进行了广泛的透射电子显微镜(TEM)研究,发现了新的,以前
未报道的S.骨皮质中小管和亚微米裂纹的金黄色葡萄球菌定植。我们
新的观察表明,反对广为接受的教条,S。金黄色葡萄球菌必须具有运动性
机制,使其能够识别小管和亚微米裂纹的几何和刚性线索,从三维
骨细胞外基质,随后从球形球菌变形为杆状细菌,
其有丝分裂后代通过亚微小管穿过不对称的间隔平面。这一机制
庇护着S.金黄色葡萄球菌在这些亚微米裂缝和小管,使白细胞变得无法
到达他们。这也可能限制抗菌药物的有效性,并使感染无法治愈。
因此,我们的总体假设是S。aureus利用触觉和硬旋转(由
分别来自3D细胞外基质的几何和刚性线索),以不可治愈地定殖小管,
皮质骨中的亚微米通道在这个应用中,我们将创新的基因和小分子
筛选方法,以设计新一代的抗菌剂,抑制haptotaxis-和durotaxis-
介导的皮质骨定植。在目标1中,我们使用创新的纳米多孔硅膜transwell
室,以确定S.金黄色葡萄球菌通过离体亚微米通道,
模拟体内通过小管的触移和硬脊膜扩张。我们还建议完成一个病例对照
临床相关研究记录了S.微裂纹和骨细胞-小管网络的金黄色葡萄球菌定植
感染的人类皮质骨在目标2中,我们采取集中的候选基因分析和无偏见的从头
遗传筛选,用互补的经验性TnSeq突变体文库筛选方法鉴定S.金黄色
参与小管侵入和迁移的基因。在目标3中,我们建议开发3D打印间隔物
注入新型抗生素,靶向生物膜中RNA和蛋白质合成的必需酶-
相关细菌或参与趋触性和硬骨扩张的必需蛋白质,以证明
在已建立的OM小鼠模型中对脓毒症股骨接骨板进行一期翻修。多学科
方法,包括组织工程和3D打印,微生物基因组学和高通量
筛选小分子抗菌剂,将提供解决重大问题所需的关键信息。
通过正式了解这一过程、确定新的药物靶点,解决骨感染的临床问题,并
探索使用3D打印的植入物浸渍间隔物进行单阶段局部递送的潜力
翻修手术
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hani A Awad其他文献
Hani A Awad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hani A Awad', 18)}}的其他基金
Training in Musculoskeletal Science: Comprehensive Training in Pain Studies
肌肉骨骼科学培训:疼痛研究综合培训
- 批准号:
10853550 - 财政年份:2023
- 资助金额:
$ 15.33万 - 项目类别:
Biomechanics, Biomaterials and Multimodal Tissue Imaging Core (BBMTI Core)
生物力学、生物材料和多模态组织成像核心(BBMTI 核心)
- 批准号:
10232836 - 财政年份:2022
- 资助金额:
$ 15.33万 - 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing
用于药物筛选和疗效测试的肌腱炎症和纤维化的微生理系统
- 批准号:
10515790 - 财政年份:2020
- 资助金额:
$ 15.33万 - 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing: MPS Database Engagement
用于药物筛选和功效测试的肌腱炎症和纤维化的微生理系统:MPS 数据库参与
- 批准号:
10430792 - 财政年份:2020
- 资助金额:
$ 15.33万 - 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing
用于药物筛选和疗效测试的肌腱炎症和纤维化的微生理系统
- 批准号:
10239102 - 财政年份:2020
- 资助金额:
$ 15.33万 - 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing
用于药物筛选和疗效测试的肌腱炎症和纤维化的微生理系统
- 批准号:
10674534 - 财政年份:2020
- 资助金额:
$ 15.33万 - 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing
用于药物筛选和疗效测试的肌腱炎症和纤维化的微生理系统
- 批准号:
10037991 - 财政年份:2020
- 资助金额:
$ 15.33万 - 项目类别:
Elucidating the Mechanisms of S. aureus Motility in Bone and Developing Interventions
阐明金黄色葡萄球菌在骨中的运动机制并制定干预措施
- 批准号:
10402966 - 财政年份:2017
- 资助金额:
$ 15.33万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 15.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 15.33万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 15.33万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 15.33万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 15.33万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 15.33万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 15.33万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 15.33万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 15.33万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 15.33万 - 项目类别:
Standard Grant














{{item.name}}会员




