Intestinal Mucosal Growth in Health and Surgical Diseases
健康和外科疾病中的肠粘膜生长
基本信息
- 批准号:10656762
- 负责人:
- 金额:$ 58.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-09-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectBacteriaBacterial TranslocationBindingBlood CirculationCell MaintenanceCell physiologyCessation of lifeClinicClinicalComplexDefectDevelopmentDiseaseEGF geneEnvironmentEpithelial CellsEpitheliumEventExcisionFunctional disorderFundingGastrointestinal Surgical ProceduresGene ExpressionGene Expression ProfileGoalsGrowthGut MucosaHealthHomeostasisHost DefenseHuR proteinHumanIleitisImpairmentIntestinal MucosaIntestinesIschemiaKnock-outKnowledgeLigandsMembraneMesenteryMessenger RNAMetabolicMitochondriaMitochondrial ProteinsModelingMucous MembraneMultiple Organ FailureOperative Surgical ProceduresPaneth CellsPathogenesisPatientsPoisonProcessProteinsRNARNA-Binding ProteinsRegulationReperfusion TherapyRoleSepsisSignal TransductionSmall IntestinesStarvationStressSurfaceTestingTherapeuticTotal Parenteral NutritionTranscription ProcessTranslationsUntranslated RNAWNT3 genebaseeffective therapygastrointestinal epitheliumgut homeostasisin vivointestinal barrierintestinal epitheliummRNA StabilitymRNA Translationmitochondrial dysfunctionmitochondrial metabolismnotch proteinnovelnovel therapeuticsposttranscriptionalpreservationprohibitinresponseself-renewalstem cell nichestem cell proliferationstem cellstherapeutically effective
项目摘要
Abstract
Inhibition of intestinal mucosal growth occurs commonly in various critical surgical disorders, particularly
in patients who undergo massive gastrointestinal surgical resections and are then supported with total
parenteral nutrition (TPN). Disrupted mucosal renewal impairs gut barrier dysfunction and leads to sepsis
and, in some instances, multiple organ dysfunction syndrome and death. Effective therapies to preserve
the intestinal epithelial integrity in patients with critical surgical illnesses are limited, as the mechanisms
that regulate gut mucosal renewal in stressful environments are poorly understood. With on-going support
for this project, our group was the first to implicate RNA-binding proteins (RBPs) and long noncoding RNAs
(lncRNAs) in gut mucosal growth and to show that dysregulation of RBP HuR and lncRNA uc.173 impairs
epithelial renewal, compromises epithelial host defenses, and disrupts the intestinal barrier. However, it
remains unknown how dysregulated HuR and uc.173 affect growth of the intestinal mucosa and how these
findings can be exploited to benefit patients with critical surgical illnesses. Rapid self-renewal of the
intestinal mucosa is driven by intestinal stem cells (ISCs) located at the crypt base. Paneth cells (PCs)
constitute the niche for ISCs in the small intestine and provide multiple secreted (WNT, EGF) and surfaced-
bound (Notch ligand) niche signals essential for ISC maintenance and function. Mitochondrial homeostasis
is essential for sustaining the PC/ISC niche, whereas disrupted mitochondrial function leads to PC defects
and ileitis. Our preliminary studies indicate that defects in PCs induced by targeted HuR deletion or uc.173
silencing resulted in the concomitant loss of ISC activity in vivo as well as ex vivo and that HuR knockout
and uc.173 inhibition also caused mitochondrial dysfunction, along with reduced levels of WNT3 and Notch
ligands in PCs. Building on these exciting observations, we now propose the paradigm-shifting hypothesis
that HuR and uc.173 regulate the PC/ISC niche by maintaining mitochondrial homeostasis, in turn
regulating intestinal mucosal renewal and adaptation in critical surgical diseases. Two specific aims are
proposed to test the hypothesis: 1) to define the exact role of the PC/ISC niche in HuR/uc.173-regulated
intestinal mucosal growth under critical surgical conditions; and 2) to determine if HuR and uc.173 regulate
PC/ISC niche function by modulating mitochondrial metabolism in response to critical surgical stress.
Completion of these specific aims will uncover novel mechanisms underlying the pathogenesis of intestinal
mucosal growth inhibition in patients with critical surgical disorders. It will also establish a fundamental
basis for developing new effective therapeutics to promote gut mucosal growth/adaptation by targeting the
PC/ISC niche activity via HuR and uc.173.
摘要
肠粘膜生长的抑制通常发生在各种严重的外科疾病中,特别是
在接受大规模胃肠道手术切除,然后用全
肠外营养(TPN)。破坏的粘膜更新损害肠道屏障功能障碍并导致败血症
在某些情况下,还会导致多器官功能障碍综合征和死亡。有效的治疗方法,
患有严重外科疾病的患者的肠上皮完整性是有限的,
在应激环境中调节肠粘膜更新的机制还知之甚少。在持续的支持下
在这个项目中,我们的小组是第一个涉及RNA结合蛋白(RBP)和长非编码RNA的小组
173在肠道粘膜生长中的作用,并显示RBP HuR和lncRNA uc.173的失调损害了
上皮更新,损害上皮宿主防御,并破坏肠屏障。但
HuR和uc.173的失调如何影响肠粘膜的生长以及它们如何影响肠粘膜的生长仍然是未知的。
研究结果可用于治疗外科重症患者。快速自我更新
肠粘膜由位于隐窝基底的肠干细胞(ISCs)驱动。潘氏细胞
构成小肠中ISC的生态位,并提供多种分泌(WNT,EGF)和表面-
结合的(Notch配体)小生境信号对于ISC的维持和功能至关重要。线粒体内稳态
是维持PC/ISC生态位所必需的,而线粒体功能的破坏导致PC缺陷
回肠炎我们的初步研究表明,靶向HuR缺失或uc.173诱导的PC缺陷。
沉默导致在体内以及离体ISC活性的伴随损失,
抑制uc.173也导致线粒体功能障碍,沿着WNT 3和Notch水平降低
PC中的配体。基于这些令人兴奋的观察,我们现在提出范式转移假说
HuR和uc.173通过维持线粒体内稳态调节PC/ISC生态位,
在外科危重疾病中调节肠粘膜更新和适应。两个具体目标是
提出了检验假设:1)确定PC/ISC生态位在HuR/uc.173调节的细胞中的确切作用。
关键手术条件下的肠粘膜生长;和2)确定HuR和uc.173是否调节
PC/ISC生态位功能通过调节线粒体代谢来响应关键的手术应激。
这些特定目标的完成将揭示肠道肿瘤发病机制的新机制。
严重外科疾病患者的粘膜生长抑制。它还将建立一个基本的
为开发新的有效治疗剂以通过靶向肠粘膜生长/适应提供了基础。
通过HuR和uc.173的PC/ISC生态位活性。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian-Ying Wang其他文献
Jian-Ying Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian-Ying Wang', 18)}}的其他基金
MicroRNA-Suppressed Mitochondrial Fusion in Mediating the Teratogenicity of Maternal Diabetes Leading to Heart Defects
MicroRNA 抑制线粒体融合介导导致心脏缺陷的母体糖尿病致畸性
- 批准号:
9403483 - 财政年份:2017
- 资助金额:
$ 58.47万 - 项目类别:
MicroRNA-Suppressed Mitochondrial Fusion in Mediating the Teratogenicity of Maternal Diabetes Leading to Heart Defects
MicroRNA 抑制线粒体融合介导导致心脏缺陷的母体糖尿病致畸性
- 批准号:
9922996 - 财政年份:2017
- 资助金额:
$ 58.47万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
- 批准号:
BB/Y003187/1 - 财政年份:2024
- 资助金额:
$ 58.47万 - 项目类别:
Research Grant
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
- 批准号:
24H00582 - 财政年份:2024
- 资助金额:
$ 58.47万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
DNA replication dynamics in living bacteria
活细菌中的 DNA 复制动态
- 批准号:
23K25843 - 财政年份:2024
- 资助金额:
$ 58.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conference: Symposium on the Immune System of Bacteria
会议:细菌免疫系统研讨会
- 批准号:
2349218 - 财政年份:2024
- 资助金额:
$ 58.47万 - 项目类别:
Standard Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 58.47万 - 项目类别:
Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 58.47万 - 项目类别:
Fellowship
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
- 批准号:
2468773 - 财政年份:2024
- 资助金额:
$ 58.47万 - 项目类别:
Studentship
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
- 批准号:
BB/Y005724/1 - 财政年份:2024
- 资助金额:
$ 58.47万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 58.47万 - 项目类别:
Research Grant
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
- 批准号:
2338880 - 财政年份:2024
- 资助金额:
$ 58.47万 - 项目类别:
Continuing Grant