Using instrumented everyday gait to predict falls in older adults using the WHS cohort

使用 WHS 队列,使用仪器化的日常步态来预测老年人跌倒

基本信息

  • 批准号:
    10657828
  • 负责人:
  • 金额:
    $ 65.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

Among community-living older adults, falls are a leading cause of injury, disability, injury-related death, and high medical costs. Despite decades of research, the proportion of older adults who fall has not declined. Identifying older adults at risk of falls remains a major public health priority. Exercise and other interventions can lower fall risk; however, new tools are needed to determine who is most likely to benefit from early interventions. Early research linking fall risk to gait measures obtained in the clinic (e.g., average speed, stride variability) contributed significantly to the understanding of the prediction of fall risk. Studies have also shown that older adults who are more active have reduced risks of falls and fall-related injury. However, critical gaps remain. Exciting advances in digital medicine and remote monitoring using wearable devices have afforded new and more widely accessible opportunities for evaluating the relationships between Daily Living Gait (DLG) and Daily Living Physical Activity (DLPA) to injurious falls in older adults. Measures of DLG (e.g., gait speed, cadence, variability, and how these vary throughout the week) and measures of DLPA (e.g., activity levels and activity fragmentation) can all be derived from a single accelerometer worn for 1 week. While growing evidence suggests that DLG and DLPA do a better job at predicting falls than conventional in-clinic measures, studies to date have been relatively small and have not focused on the prediction of injurious falls. Moreover, little is known about the utility of combining DLG and DLPA measures to predict injurious falls. To address these gaps, we will leverage: 1) an existing large dataset of older women enrolled in the Women’s Health Study (WHS) and 2) advances in wearable technology and machine learning. From 2011 to 2015, 17,466 WHS women wore a tri-axial accelerometer during waking hours for a week; they also regularly self-reported their physical activity levels and health history. We propose to evaluate, for the first time, if and how DLG and DLPA measures predict fall-related injuries in this aging cohort (average age=72 years at the time of accelerometer wear) using records of injurious falls from the Centers for Medicare & Medicaid Services (CMS). Primary Aims 1 and 2 will evaluate which specific measures of DLG and DLPA are associated with the risk of injurious falls in the subsequent year after assessment, using statistical and machine learning approaches that use time-to-event analyses (with and without adjustments for covariates). Primary Aim 3 will evaluate whether utilizing measures of both DLG and DLPA is more strongly associated with the risk of injurious falls than utilizing each of these measures alone. We will also determine if self-reported exercise history is associated with DLG and DLPA, and explore whether markers of DLG and DLPA are associated with risks of injurious falls over more extended periods of 5 and 10 years, as secondary and exploratory aims. By taking advantage of a unique, large dataset, our multi-disciplinary team will identify potential “signatures” to identify high-risk adults who may benefit from early fall prevention strategies and markedly accelerate the potential of using digital markers of fall risk.
在社区生活的老年人中,跌倒是造成伤害、残疾、伤害相关死亡和高血压的主要原因

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JEFFREY M HAUSDORFF其他文献

JEFFREY M HAUSDORFF的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JEFFREY M HAUSDORFF', 18)}}的其他基金

Ambulatory Monitoring of Near Falls: A Novel Measure of Fall Risk
临近跌倒的动态监测:跌倒风险的一种新测量方法
  • 批准号:
    7896176
  • 财政年份:
    2010
  • 资助金额:
    $ 65.81万
  • 项目类别:
Ambulatory Monitoring of Near Falls: A Novel Measure of Fall Risk
临近跌倒的动态监测:跌倒风险的一种新测量方法
  • 批准号:
    8123363
  • 财政年份:
    2010
  • 资助金额:
    $ 65.81万
  • 项目类别:
EFFECTS OF DUAL TASK ON GAIT INSTABILITY IN PARKINSONS DISEASE
双重任务对帕金森病步态不稳定性的影响
  • 批准号:
    7366524
  • 财政年份:
    2006
  • 资助金额:
    $ 65.81万
  • 项目类别:
SCALING ANALYSIS OF PARKINSONIAN TREMOR
帕金森震颤的尺度分析
  • 批准号:
    7366531
  • 财政年份:
    2006
  • 资助金额:
    $ 65.81万
  • 项目类别:
FEAR OF FALLING & GAIT DYNAMICS IN ELDERLY
害怕跌倒
  • 批准号:
    7366525
  • 财政年份:
    2006
  • 资助金额:
    $ 65.81万
  • 项目类别:
FREEZING OF GAIT, BRADYKINESIA & PARKINSONS DISEASE
步态冻结、运动迟缓
  • 批准号:
    7366526
  • 财政年份:
    2006
  • 资助金额:
    $ 65.81万
  • 项目类别:
FEAR OF FALLING & GAIT DYNAMICS IN ELDERLY
害怕跌倒
  • 批准号:
    6979241
  • 财政年份:
    2003
  • 资助金额:
    $ 65.81万
  • 项目类别:
FREEZING OF GAIT, BRADYKINESIA & PARKINSONS DISEASE
步态冻结、运动迟缓
  • 批准号:
    6979243
  • 财政年份:
    2003
  • 资助金额:
    $ 65.81万
  • 项目类别:
EFFECTS OF DUAL TASK ON GAIT INSTABILITY IN PARKINSONS DISEASE
双重任务对帕金森病步态不稳定性的影响
  • 批准号:
    6979239
  • 财政年份:
    2003
  • 资助金额:
    $ 65.81万
  • 项目类别:
SCALING ANALYSIS OF PARKINSONIAN TREMOR
帕金森震颤的尺度分析
  • 批准号:
    6979249
  • 财政年份:
    2003
  • 资助金额:
    $ 65.81万
  • 项目类别:

相似海外基金

Establishing best practices for the use of accelerometer measured ambient light sensor data to assess children's outdoor time
建立使用加速度计测量的环境光传感器数据来评估儿童的户外时间的最佳实践
  • 批准号:
    10731315
  • 财政年份:
    2023
  • 资助金额:
    $ 65.81万
  • 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
  • 批准号:
    10727374
  • 财政年份:
    2023
  • 资助金额:
    $ 65.81万
  • 项目类别:
Development of environmentally robust and thermally stable Microelectromechanical Systems (MEMS) based accelerometer for automotive applications
开发适用于汽车应用的环境稳定且热稳定的微机电系统 (MEMS) 加速度计
  • 批准号:
    566730-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 65.81万
  • 项目类别:
    Alliance Grants
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
  • 批准号:
    10444075
  • 财政年份:
    2022
  • 资助金额:
    $ 65.81万
  • 项目类别:
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
  • 批准号:
    10617774
  • 财政年份:
    2022
  • 资助金额:
    $ 65.81万
  • 项目类别:
Exploration of novel pathophysiology of chemotherapy-induced peripheral neuropathy utilizing quantitative sensory testing and accelerometer
利用定量感觉测试和加速度计探索化疗引起的周围神经病变的新病理生理学
  • 批准号:
    22K17623
  • 财政年份:
    2022
  • 资助金额:
    $ 65.81万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigating the validity and reliability of accelerometer-based measures of physical activity and sedentary time in toddlers (iPLAY)
研究基于加速度计的幼儿体力活动和久坐时间测量的有效性和可靠性 (iPLAY)
  • 批准号:
    475451
  • 财政年份:
    2022
  • 资助金额:
    $ 65.81万
  • 项目类别:
    Studentship Programs
Doctoral Dissertation Research: Leveraging Intensive Time Series of Accelerometer Data to Assess Impulsivity and Inattention in Preschool Children
博士论文研究:利用加速计数据的密集时间序列来评估学龄前儿童的冲动和注意力不集中
  • 批准号:
    2120223
  • 财政年份:
    2021
  • 资助金额:
    $ 65.81万
  • 项目类别:
    Standard Grant
Investigating the reliability of accelerometer-based measures of physical activity and sedentary time in toddlers
研究基于加速度计的幼儿体力活动和久坐时间测量的可靠性
  • 批准号:
    466914
  • 财政年份:
    2021
  • 资助金额:
    $ 65.81万
  • 项目类别:
    Studentship Programs
Development of a rotation-invariant accelerometer for human activity recognition
开发用于人类活动识别的旋转不变加速度计
  • 批准号:
    21K19804
  • 财政年份:
    2021
  • 资助金额:
    $ 65.81万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了