Using instrumented everyday gait to predict falls in older adults using the WHS cohort
使用 WHS 队列,使用仪器化的日常步态来预测老年人跌倒
基本信息
- 批准号:10657828
- 负责人:
- 金额:$ 65.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAccelerometerActivities of Daily LivingAddressAdultAffectAgeAgingBody mass indexBrainCardiovascular systemCharacteristicsClinicClinicalClinical ManagementCognitionCognitiveCohort StudiesComplexDataDementiaDeveloped CountriesDigital biomarkerDual-Energy X-Ray AbsorptiometryEarly InterventionEarly identificationElderlyEnrollmentEventExerciseFall preventionFutureGaitGait speedHealthHip region structureHourHuman ResourcesHypertensionIndividualInjuryInterventionKnowledgeLaboratoriesLinkMachine LearningMeasuresMedical Care CostsMetabolicMotionMotivationMuscleMusculoskeletalNursing HomesOccupationsOutcomePatient Self-ReportPerformancePersonsPhysical activityPhysiologicalPilot ProjectsPrevention strategyPublic HealthRecording of previous eventsRecordsResearchRiskRisk EstimateSmokingSocietiesSpeedSystemTimeTrainingUnited States Centers for Medicare and Medicaid ServicesVisitWalkingWomanWomen&aposs HealthWorkage relatedcohortcommunity livingcostdigital assessmentdigital medicinedisabilityevidence basefall injuryfall riskfallshigh riskinjury-related deathinstrumentlarge datasetslifestyle factorsmortalitymultidisciplinarymuscle formolder womenoutcome predictionpublic health prioritiesremote monitoringrespiratoryskeletalstatistical and machine learningtime usetoolwearable devicewearable monitor
项目摘要
Among community-living older adults, falls are a leading cause of injury, disability, injury-related death, and high
medical costs. Despite decades of research, the proportion of older adults who fall has not declined. Identifying
older adults at risk of falls remains a major public health priority. Exercise and other interventions can lower fall
risk; however, new tools are needed to determine who is most likely to benefit from early interventions.
Early research linking fall risk to gait measures obtained in the clinic (e.g., average speed, stride variability)
contributed significantly to the understanding of the prediction of fall risk. Studies have also shown that older
adults who are more active have reduced risks of falls and fall-related injury. However, critical gaps
remain. Exciting advances in digital medicine and remote monitoring using wearable devices have afforded new
and more widely accessible opportunities for evaluating the relationships between Daily Living Gait (DLG) and
Daily Living Physical Activity (DLPA) to injurious falls in older adults. Measures of DLG (e.g., gait speed, cadence,
variability, and how these vary throughout the week) and measures of DLPA (e.g., activity levels and activity
fragmentation) can all be derived from a single accelerometer worn for 1 week. While growing evidence suggests
that DLG and DLPA do a better job at predicting falls than conventional in-clinic measures, studies to date have
been relatively small and have not focused on the prediction of injurious falls. Moreover, little is known about the
utility of combining DLG and DLPA measures to predict injurious falls.
To address these gaps, we will leverage: 1) an existing large dataset of older women enrolled in the Women’s
Health Study (WHS) and 2) advances in wearable technology and machine learning. From 2011 to 2015, 17,466
WHS women wore a tri-axial accelerometer during waking hours for a week; they also regularly self-reported
their physical activity levels and health history. We propose to evaluate, for the first time, if and how DLG and
DLPA measures predict fall-related injuries in this aging cohort (average age=72 years at the time of
accelerometer wear) using records of injurious falls from the Centers for Medicare & Medicaid Services (CMS).
Primary Aims 1 and 2 will evaluate which specific measures of DLG and DLPA are associated with the risk of
injurious falls in the subsequent year after assessment, using statistical and machine learning approaches that
use time-to-event analyses (with and without adjustments for covariates). Primary Aim 3 will evaluate whether
utilizing measures of both DLG and DLPA is more strongly associated with the risk of injurious falls than utilizing
each of these measures alone. We will also determine if self-reported exercise history is associated with DLG
and DLPA, and explore whether markers of DLG and DLPA are associated with risks of injurious falls over more
extended periods of 5 and 10 years, as secondary and exploratory aims. By taking advantage of a unique, large
dataset, our multi-disciplinary team will identify potential “signatures” to identify high-risk adults who may benefit
from early fall prevention strategies and markedly accelerate the potential of using digital markers of fall risk.
在社区生活的老年人中,福尔斯是伤害、残疾、与伤害相关的死亡的主要原因,
医疗费用。尽管经过几十年的研究,老年人跌倒的比例并没有下降。识别
有福尔斯跌倒危险的老年人仍然是一个主要的公共卫生优先事项。运动和其他干预措施可以降低跌倒
然而,需要新的工具来确定谁最有可能从早期干预中受益。
早期研究将跌倒风险与临床获得的步态测量结果联系起来(例如,平均速度,步幅变异性)
对理解跌倒风险的预测有很大贡献。研究还表明,
更活跃的成年人降低了福尔斯和与跌倒有关的伤害的风险。然而,
保持。数字医疗和使用可穿戴设备的远程监控的令人兴奋的进步为我们提供了新的
以及更广泛的评估日常生活步态(DLG)和
日常生活体力活动(DLPA)对老年人伤害性福尔斯跌倒的影响。DLG的度量(例如,步态速度,节奏,
变异性,以及这些在一周内如何变化)和DLPA的测量(例如,活动水平和活动
碎片)都可以从佩戴1周的单个加速度计导出。尽管越来越多的证据表明
DLG和DLPA在预测福尔斯方面比传统的临床测量更好,迄今为止的研究表明,
相对较小,并且没有集中于预测伤害性福尔斯。此外,人们对
结合DLG和DLPA措施预测伤害性福尔斯的效用。
为了解决这些差距,我们将利用:1)现有的大型老年妇女数据集,
健康研究(WHS)和2)可穿戴技术和机器学习的进展。2011年至2015年,17,466人
WHS的女性在清醒的时候戴着一个三轴加速计一周;他们还定期自我报告
他们的身体活动水平和健康史我们建议评估,第一次,如果和如何DLG和
DLPA测量预测了该老年队列中与跌倒相关的损伤(平均年龄=72岁,
加速计磨损)使用来自医疗保险和医疗补助服务中心(CMS)的伤害性福尔斯记录。
主要目的1和2将评价DLG和DLPA的哪些特定指标与以下风险相关:
有害的福尔斯在评估后的下一年,使用统计和机器学习方法,
使用至事件发生时间分析(有和无协变量调整)。主要目标3将评估是否
使用DLG和DLPA的措施与伤害性福尔斯的风险比使用
这些措施中的每一项。我们还将确定自我报告的运动史是否与DLG相关
和DLPA,并探讨DLG和DLPA标记物是否与伤害性福尔斯跌倒的风险相关,
延长5年和10年,作为次要和探索性目标。通过利用一个独特的,
数据集,我们的多学科团队将确定潜在的“签名”,以确定可能受益的高风险成年人
从早期跌倒预防策略,并显着加快使用跌倒风险的数字标记的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY M HAUSDORFF其他文献
JEFFREY M HAUSDORFF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY M HAUSDORFF', 18)}}的其他基金
Ambulatory Monitoring of Near Falls: A Novel Measure of Fall Risk
临近跌倒的动态监测:跌倒风险的一种新测量方法
- 批准号:
7896176 - 财政年份:2010
- 资助金额:
$ 65.81万 - 项目类别:
Ambulatory Monitoring of Near Falls: A Novel Measure of Fall Risk
临近跌倒的动态监测:跌倒风险的一种新测量方法
- 批准号:
8123363 - 财政年份:2010
- 资助金额:
$ 65.81万 - 项目类别:
EFFECTS OF DUAL TASK ON GAIT INSTABILITY IN PARKINSONS DISEASE
双重任务对帕金森病步态不稳定性的影响
- 批准号:
7366524 - 财政年份:2006
- 资助金额:
$ 65.81万 - 项目类别:
FREEZING OF GAIT, BRADYKINESIA & PARKINSONS DISEASE
步态冻结、运动迟缓
- 批准号:
7366526 - 财政年份:2006
- 资助金额:
$ 65.81万 - 项目类别:
FREEZING OF GAIT, BRADYKINESIA & PARKINSONS DISEASE
步态冻结、运动迟缓
- 批准号:
6979243 - 财政年份:2003
- 资助金额:
$ 65.81万 - 项目类别:
EFFECTS OF DUAL TASK ON GAIT INSTABILITY IN PARKINSONS DISEASE
双重任务对帕金森病步态不稳定性的影响
- 批准号:
6979239 - 财政年份:2003
- 资助金额:
$ 65.81万 - 项目类别:
相似海外基金
Establishing best practices for the use of accelerometer measured ambient light sensor data to assess children's outdoor time
建立使用加速度计测量的环境光传感器数据来评估儿童的户外时间的最佳实践
- 批准号:
10731315 - 财政年份:2023
- 资助金额:
$ 65.81万 - 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
- 批准号:
10727374 - 财政年份:2023
- 资助金额:
$ 65.81万 - 项目类别:
Development of environmentally robust and thermally stable Microelectromechanical Systems (MEMS) based accelerometer for automotive applications
开发适用于汽车应用的环境稳定且热稳定的微机电系统 (MEMS) 加速度计
- 批准号:
566730-2021 - 财政年份:2022
- 资助金额:
$ 65.81万 - 项目类别:
Alliance Grants
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
- 批准号:
10444075 - 财政年份:2022
- 资助金额:
$ 65.81万 - 项目类别:
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
- 批准号:
10617774 - 财政年份:2022
- 资助金额:
$ 65.81万 - 项目类别:
Investigating the validity and reliability of accelerometer-based measures of physical activity and sedentary time in toddlers (iPLAY)
研究基于加速度计的幼儿体力活动和久坐时间测量的有效性和可靠性 (iPLAY)
- 批准号:
475451 - 财政年份:2022
- 资助金额:
$ 65.81万 - 项目类别:
Studentship Programs
Exploration of novel pathophysiology of chemotherapy-induced peripheral neuropathy utilizing quantitative sensory testing and accelerometer
利用定量感觉测试和加速度计探索化疗引起的周围神经病变的新病理生理学
- 批准号:
22K17623 - 财政年份:2022
- 资助金额:
$ 65.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating the reliability of accelerometer-based measures of physical activity and sedentary time in toddlers
研究基于加速度计的幼儿体力活动和久坐时间测量的可靠性
- 批准号:
466914 - 财政年份:2021
- 资助金额:
$ 65.81万 - 项目类别:
Studentship Programs
Doctoral Dissertation Research: Leveraging Intensive Time Series of Accelerometer Data to Assess Impulsivity and Inattention in Preschool Children
博士论文研究:利用加速计数据的密集时间序列来评估学龄前儿童的冲动和注意力不集中
- 批准号:
2120223 - 财政年份:2021
- 资助金额:
$ 65.81万 - 项目类别:
Standard Grant
Development of a rotation-invariant accelerometer for human activity recognition
开发用于人类活动识别的旋转不变加速度计
- 批准号:
21K19804 - 财政年份:2021
- 资助金额:
$ 65.81万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)