Using instrumented everyday gait to predict falls in older adults using the WHS cohort
使用 WHS 队列,使用仪器化的日常步态来预测老年人跌倒
基本信息
- 批准号:10657828
- 负责人:
- 金额:$ 65.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAccelerometerActivities of Daily LivingAddressAdultAffectAgeAgingBody mass indexBrainCardiovascular systemCharacteristicsClinicClinicalClinical ManagementCognitionCognitiveCohort StudiesComplexDataDementiaDeveloped CountriesDigital biomarkerDual-Energy X-Ray AbsorptiometryEarly InterventionEarly identificationElderlyEnrollmentEventExerciseFall preventionFutureGaitGait speedHealthHip region structureHourHuman ResourcesHypertensionIndividualInjuryInterventionKnowledgeLaboratoriesLinkMachine LearningMeasuresMedical Care CostsMetabolicMotionMotivationMuscleMusculoskeletalNursing HomesOccupationsOutcomePatient Self-ReportPerformancePersonsPhysical activityPhysiologicalPilot ProjectsPrevention strategyPublic HealthRecording of previous eventsRecordsResearchRiskRisk EstimateSmokingSocietiesSpeedSystemTimeTrainingUnited States Centers for Medicare and Medicaid ServicesVisitWalkingWomanWomen&aposs HealthWorkage relatedcohortcommunity livingcostdigital assessmentdigital medicinedisabilityevidence basefall injuryfall riskfallshigh riskinjury-related deathinstrumentlarge datasetslifestyle factorsmortalitymultidisciplinarymuscle formolder womenoutcome predictionpublic health prioritiesremote monitoringrespiratoryskeletalstatistical and machine learningtime usetoolwearable devicewearable monitor
项目摘要
Among community-living older adults, falls are a leading cause of injury, disability, injury-related death, and high
medical costs. Despite decades of research, the proportion of older adults who fall has not declined. Identifying
older adults at risk of falls remains a major public health priority. Exercise and other interventions can lower fall
risk; however, new tools are needed to determine who is most likely to benefit from early interventions.
Early research linking fall risk to gait measures obtained in the clinic (e.g., average speed, stride variability)
contributed significantly to the understanding of the prediction of fall risk. Studies have also shown that older
adults who are more active have reduced risks of falls and fall-related injury. However, critical gaps
remain. Exciting advances in digital medicine and remote monitoring using wearable devices have afforded new
and more widely accessible opportunities for evaluating the relationships between Daily Living Gait (DLG) and
Daily Living Physical Activity (DLPA) to injurious falls in older adults. Measures of DLG (e.g., gait speed, cadence,
variability, and how these vary throughout the week) and measures of DLPA (e.g., activity levels and activity
fragmentation) can all be derived from a single accelerometer worn for 1 week. While growing evidence suggests
that DLG and DLPA do a better job at predicting falls than conventional in-clinic measures, studies to date have
been relatively small and have not focused on the prediction of injurious falls. Moreover, little is known about the
utility of combining DLG and DLPA measures to predict injurious falls.
To address these gaps, we will leverage: 1) an existing large dataset of older women enrolled in the Women’s
Health Study (WHS) and 2) advances in wearable technology and machine learning. From 2011 to 2015, 17,466
WHS women wore a tri-axial accelerometer during waking hours for a week; they also regularly self-reported
their physical activity levels and health history. We propose to evaluate, for the first time, if and how DLG and
DLPA measures predict fall-related injuries in this aging cohort (average age=72 years at the time of
accelerometer wear) using records of injurious falls from the Centers for Medicare & Medicaid Services (CMS).
Primary Aims 1 and 2 will evaluate which specific measures of DLG and DLPA are associated with the risk of
injurious falls in the subsequent year after assessment, using statistical and machine learning approaches that
use time-to-event analyses (with and without adjustments for covariates). Primary Aim 3 will evaluate whether
utilizing measures of both DLG and DLPA is more strongly associated with the risk of injurious falls than utilizing
each of these measures alone. We will also determine if self-reported exercise history is associated with DLG
and DLPA, and explore whether markers of DLG and DLPA are associated with risks of injurious falls over more
extended periods of 5 and 10 years, as secondary and exploratory aims. By taking advantage of a unique, large
dataset, our multi-disciplinary team will identify potential “signatures” to identify high-risk adults who may benefit
from early fall prevention strategies and markedly accelerate the potential of using digital markers of fall risk.
在社区生活的老年人中,瀑布是受伤,残疾,与伤害有关的主要原因,高
医疗费用。尽管进行了数十年的研究,但跌倒的老年人的比例并未下降。识别
有跌倒风险的老年人仍然是主要的公共卫生优先事项。运动和其他干预措施可以降低秋天
风险;但是,需要新的工具来确定谁最有可能受益于早期干预措施。
早期研究将跌倒风险联系起来,以收集诊所获得的措施(例如,平均速度,步幅可变性)
为理解跌倒风险的预测做出了重大贡献。研究还表明,年龄较大
更活跃的成年人降低了跌倒和与跌倒有关的伤害的风险。但是,关键差距
保持。使用可穿戴设备的数字医学和远程监控的令人兴奋的进步为新的
以及评估日常生活步态(DLG)和
老年人受伤的日常体育锻炼(DLPA)跌落。 DLG的度量(例如步态速度,节奏,
可变性,以及这些在整个星期内如何变化)和DLPA的度量(例如,活动水平和活动水平和活动
碎片化)可以从单个加速度计磨损中得出1周。虽然越来越多的证据表明
DLG和DLPA在预测下降方面做得比传统的临界措施更好,迄今为止的研究已有
我们相对较小,并没有专注于预测有害瀑布。而且,对
组合DLG和DLPA措施预测有害跌倒的效用。
为了解决这些差距,我们将利用:1)现有的大型妇女的大型数据集入学
健康研究(WHS)和2)可穿戴技术和机器学习的进步。从2011年到2015年,17,466
WHS妇女在一周醒来时穿了三轴加速度计;他们也经常自我报告
他们的体育锻炼水平和健康史。我们建议第一次评估DLG和如何评估
DLPA措施预测该老化队列中与跌倒有关的伤害(平均年龄= 72岁时
加速度计)使用Medicare&Medicaid Services(CMS)中心的有害跌倒记录。
主要目的1和2将评估哪些DLG和DLPA的特定度量与
在评估后的下一年,有害的跌倒,使用统计和机器学习方法
使用事件时间分析(有和没有调整协变量)。主要目标3将评估是否
利用DLG和DLPA的措施与有害跌倒的风险更密切相比
这些措施中的每一个。我们还将确定自我报告的运动历史是否与DLG相关
和DLPA,并探索DLG和DLPA的标记是否与有害的风险相关
作为次要和探索目的,长达5年和10年的时间。通过利用独特的大型
数据集,我们的多学科团队将确定潜在的“签名”,以识别可能受益的高风险成年人
从初期预防策略开始,并明显加快了使用跌倒风险的数字标记的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY M HAUSDORFF其他文献
JEFFREY M HAUSDORFF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY M HAUSDORFF', 18)}}的其他基金
Ambulatory Monitoring of Near Falls: A Novel Measure of Fall Risk
临近跌倒的动态监测:跌倒风险的一种新测量方法
- 批准号:
7896176 - 财政年份:2010
- 资助金额:
$ 65.81万 - 项目类别:
Ambulatory Monitoring of Near Falls: A Novel Measure of Fall Risk
临近跌倒的动态监测:跌倒风险的一种新测量方法
- 批准号:
8123363 - 财政年份:2010
- 资助金额:
$ 65.81万 - 项目类别:
EFFECTS OF DUAL TASK ON GAIT INSTABILITY IN PARKINSONS DISEASE
双重任务对帕金森病步态不稳定性的影响
- 批准号:
7366524 - 财政年份:2006
- 资助金额:
$ 65.81万 - 项目类别:
FREEZING OF GAIT, BRADYKINESIA & PARKINSONS DISEASE
步态冻结、运动迟缓
- 批准号:
7366526 - 财政年份:2006
- 资助金额:
$ 65.81万 - 项目类别:
FREEZING OF GAIT, BRADYKINESIA & PARKINSONS DISEASE
步态冻结、运动迟缓
- 批准号:
6979243 - 财政年份:2003
- 资助金额:
$ 65.81万 - 项目类别:
EFFECTS OF DUAL TASK ON GAIT INSTABILITY IN PARKINSONS DISEASE
双重任务对帕金森病步态不稳定性的影响
- 批准号:
6979239 - 财政年份:2003
- 资助金额:
$ 65.81万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向结构和地震运动监测的低成本GNSS和加速度计集成方法研究
- 批准号:42311530062
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
绝缘体辐射诱导电荷致工作态三明治式MEMS加速度计敏感结构非单向性损伤机制研究
- 批准号:12305313
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
柔性MEMS谐振式加速度计的共形设计与热弹性耦合动力学分析
- 批准号:12202240
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Cognitive Health and Modifiable Factors of Daily Sleep and Activities Among Dementia Family Caregivers
痴呆症家庭护理人员的认知健康状况以及日常睡眠和活动的可改变因素
- 批准号:
10643624 - 财政年份:2023
- 资助金额:
$ 65.81万 - 项目类别:
Wearable Sensors for Quantitative Assessment of Motor Impairment in Huntington's Disease
用于定量评估亨廷顿病运动损伤的可穿戴传感器
- 批准号:
9409865 - 财政年份:2017
- 资助金额:
$ 65.81万 - 项目类别:
An interactive, wearable device for measuring and motivating hand use after stroke
用于测量和激励中风后手部使用的交互式可穿戴设备
- 批准号:
9046229 - 财政年份:2016
- 资助金额:
$ 65.81万 - 项目类别:
Machine Learning Algorithms to Measure Physical Activity in Children with Cerebral Palsy
用于测量脑瘫儿童身体活动的机器学习算法
- 批准号:
9346616 - 财政年份:2016
- 资助金额:
$ 65.81万 - 项目类别:
Relationships between daily life behaviors and physical activity measured using a triaxial accelerometer in elderly, community-dwelling Japanese individuals
使用三轴加速度计测量日本社区老年人的日常生活行为和身体活动之间的关系
- 批准号:
15K11774 - 财政年份:2015
- 资助金额:
$ 65.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)