Optimizing Hand Rehabilitation Post-Stroke Using Interactive Virtual Environments

使用交互式虚拟环境优化中风后手部康复

基本信息

  • 批准号:
    9389860
  • 负责人:
  • 金额:
    $ 78.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-03-05 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

Project Abstract This application seeks funding to continue our on-going investigation into the effects of intensive, high dosage task and impairment based training of the hemiparetic hand, using haptic robots integrated with complex gaming and virtual reality simulations. A growing body of work suggests that there is a time-limited period of post-ischemic heightened neuronal plasticity during which intensive training may optimally affect the recovery of gross motor skills, indicating that the timing of rehabilitation is as important as the dosing. However, recent literature indicates a controversy regarding both the value of intensive, high dosage as well as the optimal timing for therapy in the first two months after stroke. Our study is designed to empirically investigate this controversy. Furthermore, current service delivery models in the United States limit treatment time and length of hospital stay during this period. In order to facilitate timely discharge from the acute care hospital or the acute rehabilitation setting, the initial priority for rehabilitation is independence in transfers and ambulation. This has negatively impacted the provision of intensive hand and upper extremity therapy during this period of heightened neuroplasticity. It is evident that providing additional, intensive therapy during the acute rehabilitation stay is more complicated to implement and difficult for patients to tolerate, than initiating it in the outpatient setting, immediately after discharge. Our pilot data show that we are able to integrate intensive, targeted hand therapy into the routine of an acute rehabilitation setting. Our system has been specifically designed to deliver hand training when motion and strength are limited. The system uses adaptive algorithms to drive individual finger movement, gain adaptation and workspace modification to increase finger range of motion, and haptic and visual feedback from mirrored movements to reinforce motor networks in the lesioned hemisphere. We will translate the extensive experience gained in our previous studies on patients in the chronic phase, to investigate the effects of this type of intervention on recovery and function of the hand, when the training is initiated within early period of heightened plasticity. We will integrate the behavioral, the kinematic/kinetic and neurophysiological aspects of recovery to determine: 1) whether early intensive training focusing on the hand will result in a more functional hemiparetic arm; (2) whether it is necessary to initiate intensive hand therapy during the very early inpatient rehabilitation phase or will comparable outcomes be achieved if the therapy is initiated right after discharge, in the outpatient period; and 3) whether the effect of the early intervention observed at 6 months post stroke can be predicted by the cortical reorganization evaluated immediately after the therapy. This proposal will fill a critical gap in the literature and make a significant advancement in the investigation of putative interventions for recovery of hand function in patients post-stroke. Currently relatively little is known about the effect of very intensive, progressive VR/robotics training in the acute early period (5-30 days) post-stroke. This proposal can move us past a critical barrier to the development of more effective approaches in stroke rehabilitation targeted at the hand and arm.
项目摘要 该应用程序寻求资金继续我们对密集,高剂量影响的持续调查 使用与复杂集成的触觉机器人对偏瘫手的任务和损伤训练 游戏和虚拟现实模拟。越来越多的工作表明有一个时间限度的时期 缺血后的神经元可塑性在此期间可能会最佳地影响恢复 总体运动技能,表明康复的时机与剂量一样重要。但是,最近 文献表明了关于密集,高剂量和最佳价值的争议 中风后的头两个月,治疗时间。我们的研究旨在凭经验研究 争议。此外,美国当前的服务交付模型限制了治疗时间和长度 在此期间住院。为了促进及时从急诊医院或 急性康复设置,康复的最初优先事项是转移和行动中的独立性。 在此期间,这对强化手和上肢疗法的提供产生了负面影响 神经可塑性提高。显然,在急性期间提供额外的强化疗法 与在 出院后立即门诊设置。我们的飞行员数据表明​​,我们能够整合密集型, 有针对性的手部治疗急性康复环境的常规。我们的系统专门 旨在在运动和力量有限时提供手训练。系统使用自适应算法 为了驱动单个手指运动,获得适应和修改工作空间以增加手指范围 运动,镜像运动的触觉和视觉反馈,以增强病变中的电机网络 半球。我们将翻译在先前对患者的研究中获得的丰富经验 慢性阶段,研究这种类型的干预对手的恢复和功能的影响 训练是在可塑性提高的早期开始的。我们将整合行为, 恢复的运动学/动力学和神经生理方面以确定:1)早期强化训练是否是否 专注于手将导致更具功能性的偏瘫臂; (2)是否有必要发起 在早期的住院康复阶段进行强化手动治疗,或者将是可比的结果 如果在出院后立即开始治疗,则可以在门诊期开始; 3)是否效果 评估的皮质重组可以预测中风后6个月的早期干预措施 治疗后立即。该提议将填补文献中的重要空白,并占据重大的 在研究后,卒中患者恢复手部功能的假定干预措施的进步。 目前,关于非常密集,进步的VR/机器人培训的影响相对较少 冲程后急性早期(5-30天)。该建议可以使我们摆脱发展的关键障碍 针对手臂和手臂的中风康复中更有效的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SERGEI V ADAMOVICH其他文献

SERGEI V ADAMOVICH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SERGEI V ADAMOVICH', 18)}}的其他基金

Planning and Updating in Frontoparietal Networks for Grasping
用于抓取的额顶网络的规划和更新
  • 批准号:
    10156949
  • 财政年份:
    2014
  • 资助金额:
    $ 78.76万
  • 项目类别:
Planning and Updating in Frontoparietal Networks for Grasping
用于抓取的额顶网络的规划和更新
  • 批准号:
    10322054
  • 财政年份:
    2014
  • 资助金额:
    $ 78.76万
  • 项目类别:
Planning and Updating in Frontoparietal Networks for Grasping
用于抓取的额顶网络的规划和更新
  • 批准号:
    10540419
  • 财政年份:
    2014
  • 资助金额:
    $ 78.76万
  • 项目类别:
Optimizing Hand Rehabilitation Post-Stroke Using Interactive Virtual Environments
使用交互式虚拟环境优化中风后手部康复
  • 批准号:
    8238319
  • 财政年份:
    2009
  • 资助金额:
    $ 78.76万
  • 项目类别:
Optimizing Hand Rehabilitation Post-Stroke Using Interactive Virtual Environments
使用交互式虚拟环境优化中风后手部康复
  • 批准号:
    7662069
  • 财政年份:
    2009
  • 资助金额:
    $ 78.76万
  • 项目类别:
Optimizing Hand Rehabilitation Post-Stroke Using Interactive Virtual Environments
使用交互式虚拟环境优化中风后手部康复
  • 批准号:
    10192766
  • 财政年份:
    2009
  • 资助金额:
    $ 78.76万
  • 项目类别:
Optimizing Hand Rehabilitation Post-Stroke Using Interactive Virtual Environments
使用交互式虚拟环境优化中风后手部康复
  • 批准号:
    8044053
  • 财政年份:
    2009
  • 资助金额:
    $ 78.76万
  • 项目类别:
Optimizing Hand Rehabilitation Post-Stroke Using Interactive Virtual Environments
使用交互式虚拟环境优化中风后手部康复
  • 批准号:
    7779449
  • 财政年份:
    2009
  • 资助金额:
    $ 78.76万
  • 项目类别:
Virtual reality rehabilitation of hand use after stroke
中风后手部使用的虚拟现实康复
  • 批准号:
    6880236
  • 财政年份:
    2003
  • 资助金额:
    $ 78.76万
  • 项目类别:
Virtual reality rehabilitation of hand use after stroke
中风后手部使用的虚拟现实康复
  • 批准号:
    6579717
  • 财政年份:
    2003
  • 资助金额:
    $ 78.76万
  • 项目类别:

相似国自然基金

基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
社交网络上观点动力学的重要影响因素与高效算法
  • 批准号:
    62372112
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
  • 批准号:
    72372070
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法鸿沟影响因素与作用机制研究
  • 批准号:
    72304017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
  • 批准号:
    10825737
  • 财政年份:
    2023
  • 资助金额:
    $ 78.76万
  • 项目类别:
Discovery of early immunologic biomarkers for risk of PTLDS through machine learning-assisted broad temporal profiling of humoral immune response
通过机器学习辅助的体液免疫反应的广泛时间分析发现 PTLDS 风险的早期免疫生物标志物
  • 批准号:
    10738144
  • 财政年份:
    2023
  • 资助金额:
    $ 78.76万
  • 项目类别:
Germline Genetic Modifiers of Radiation Response
辐射反应的种系遗传修饰剂
  • 批准号:
    10741022
  • 财政年份:
    2023
  • 资助金额:
    $ 78.76万
  • 项目类别:
Artificial Intelligence to Predict Outcomes in Patients with Acute Kidney Injury on Continuous Renal Replacement Therapy
人工智能预测急性肾损伤患者连续肾脏替代治疗的结果
  • 批准号:
    10658576
  • 财政年份:
    2023
  • 资助金额:
    $ 78.76万
  • 项目类别:
Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
  • 批准号:
    10724048
  • 财政年份:
    2023
  • 资助金额:
    $ 78.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了