Project 3: Physical and Metabolic Constraints of Cancer Cell Invasion
项目3:癌细胞侵袭的物理和代谢限制
基本信息
- 批准号:10020781
- 负责人:
- 金额:$ 36.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAdoptedAffectAnabolismArchitectureBiologicalBiomechanicsBiophysical ProcessBiophysicsBiosensorBlocking AntibodiesBreast Cancer CellCancer ModelCell AdhesionCell LineCell surfaceCellsCellular Metabolic ProcessCellular StructuresCessation of lifeClinicalCollaborationsCombined Modality TherapyComplementComputer ModelsConsumptionDataDecision MakingDevelopmentEnvironmentEvaluationFaceFrictionGlycocalyxGoalsIn VitroIndividualIntegrinsInterventionIntrinsic factorInvadedLabelLamin Type ALinkMalignant NeoplasmsMesenchymalMetabolicMetabolic PathwayMetabolic stressMetabolismMicrofabricationMigration AssayMonitorNeoplasm MetastasisNuclearOutcomePathway interactionsPatientsPharmacologyPhysicsPhysiologicalPolysaccharidesPrimary NeoplasmProcessReportingResearchSamplingSignal TransductionStructureTherapeuticTissuesWorkcancer cellcell motilitycell typecomputer frameworkcostdeprivationexperimental studyextracellularhypoxia inducible factor 1imaging platformimprovedin vitro Assayin vivoinsightinterstitialintravital imagingintravital microscopymechanical propertiesmetabolic imagingmicrovesiclesmigrationoutcome predictionphysical processphysical propertypreventprogramsresponsesuccesstherapy outcometumortumor metabolism
项目摘要
Project Summary – Project 3
Project 3 will investigate the physical and metabolic constraints of cancer cell invasion. Cancer cell invasion
from the primary tumor into surrounding tissues is a crucial step of the metastatic cascade, which is
responsible for the vast majority of all cancer deaths. Invading cancer cells can use a number of different
`migration modes' for this process. As cells can dynamically switch between these modes, therapeutic attempts
to target specific migration mechanisms have had limited clinical success. Gaining an improved understanding
of the physical and biological mechanisms that govern the toggling between different migration modes could
provide new clues for more robust therapeutic interference to reduce or eliminate metastasis. One important
factor that has not been examined previously is how the metabolic status of individual cells can determine their
migration mode and metastatic spreading. As cancer cells pass through tight interstitial spaces and metabolite-
poor regions in vivo, they face substantial physical and metabolic challenges. We propose that invading cancer
cells must expend significant energy to penetrate such environments and adopt migration modes that minimize
metabolic cost. Cancer cell metabolism can also impact cellular structure and composition by fueling
biosynthetic pathways, which could alter cell surface architecture and nuclear deformability, and thereby
promote migration through tight spaces. The proposed research will utilize the project team's complementary
expertise in cell migration, subcellular biomechanics, intravital microscopy, and metabolic pathways and
interference. Aim 1 addresses how the physical microenvironment and adhesion/friction between the cell and
the extracellular environment determine energy consumption during different types of cell migration. Aim 2 will
investigate how physical factors intrinsic to the cell, particularly nuclear deformability and the physical
properties of the cell surface, modulate metabolic cost and migration efficiency in physiologically relevant
environments. It will further determine how metabolic reprogramming in cancer cells affects these cellular
mechanical properties and thereby modulates migration efficiency. Aim 3 will investigate the plasticity of
cancer cell migration, both in response to varying physical and metabolic challenges and to pharmacological
interference. The experimental work in each aim will be complemented by modeling of cancer cell metabolism
and physical interaction with the microenvironment, with the objective to predict outcomes of therapeutic
metabolic interventions and to identify strategies to counter adaptive responses. Project 3 will interact with both
Cores. The Tissue Microfabrication Core will provide biological samples and platforms for migration assays;
the Biophysics & Metabolic Imaging Core assists with metabolic analysis and imaging platforms. Projects 1
and 2 will contribute data and insights for a comprehensive computational modeling framework of cell
metabolism in migration; Project 2 will additionally provide tumor microvesicles for functional evaluation.
项目摘要-项目3
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan Lammerding其他文献
Jan Lammerding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan Lammerding', 18)}}的其他基金
2022 Intermediate Filaments Gordon Research Conference and Seminar
2022年中间长丝戈登研究会议暨研讨会
- 批准号:
10469043 - 财政年份:2022
- 资助金额:
$ 36.81万 - 项目类别:
Nuclear mechanobiology in confined migration (Equipment Supplement 2023)
受限迁移中的核力学生物学(设备增刊2023)
- 批准号:
10796133 - 财政年份:2020
- 资助金额:
$ 36.81万 - 项目类别:
Nuclear mechanics and mechanotransduction in muscular laminopathies
肌肉核纤层蛋白病的核力学和机械转导
- 批准号:
8413555 - 财政年份:2007
- 资助金额:
$ 36.81万 - 项目类别:
Nuclear mechanics and mechanotransduction in muscular laminopathies
肌肉核纤层蛋白病的核力学和机械转导
- 批准号:
9067464 - 财政年份:2007
- 资助金额:
$ 36.81万 - 项目类别:
Nuclear mechanics and mechanotransduction in muscular laminopathies
肌肉核纤层蛋白病的核力学和机械转导
- 批准号:
7196846 - 财政年份:2007
- 资助金额:
$ 36.81万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 36.81万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 36.81万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 36.81万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 36.81万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 36.81万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 36.81万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 36.81万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 36.81万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 36.81万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 36.81万 - 项目类别: