Ebola modeling: behavior, asymptomatic infection, and contacts
埃博拉模型:行为、无症状感染者和接触者
基本信息
- 批准号:10001553
- 负责人:
- 金额:$ 34.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AfricaAlgorithmsBehaviorBehavioralBiologyCollaborationsCommunitiesDataDemocratic Republic of the CongoDiagnosisDiagnostic testsDisease OutbreaksDoseEbolaEbola Hemorrhagic FeverEbola virusEmerging Communicable DiseasesEpidemicEthnographyEventExhibitsExposure toFirst Degree RelativeFutureHealth Care Seeking BehaviorHealth PersonnelHumanIceImmunityIndividualInfectionInternationalInterventionLiberiaLiquid substanceModelingPaintPatternPlayPreventiveReportingResearchRoleSeminal fluidSeroepidemiologic StudiesSerologicalSierra LeoneSocial NetworkStatistical ModelsStructureStudy modelsSurvivorsTestingTimeVaccinationVaccinesViral Hemorrhagic FeversVirus Diseasesbarrier to carefallshealth seeking behaviorimprovedinfection ratemathematical modelmembernonhuman primatenovelpandemic diseasepoint-of-care diagnosticspreventprotective behaviorresponsetransmission processvaccination strategyviral transmission
项目摘要
Project Summary
!
The impact of unrecognized Ebola virus (EBOV) infection (asymptomatic and symptomatic) on
transmission dynamics during the 2013–2016 West Africa Ebola outbreak is poorly understood. Individuals
who had asymptomatic EBOV infection or unrecognized symptomatic Ebola virus disease (EVD) represent
two groups who may have had different levels of exposure and rates of EBOV transmission. Increasingly
protective behaviors to avoid contact with EVD cases may have resulted in lower levels of exposure, and
these exposures may be associated with asymptomatic EBOV infection. On the other hand, individuals who
had symptomatic EVD but were never diagnosed may be disproportionately important to transmission
dynamics because some of these individuals were part of transmission chains leading to Ebola outbreaks in
previously unaffected communities.
Our research question focuses on understanding the drivers of EBOV transmission leading to
epidemic decline. Competing hypotheses were centered around issues of preventive behaviors, health-
seeking behaviors, saturation of transmission among contacts, and asymptomatic EBOV infection. Newly
available, detailed serologic, social network, behavioral, ethnographic, and vaccination data from research
collaborations in Liberia, Sierra Leone, and Democratic Republic of Congo will allow us to test competing
hypotheses in the following aims: 1) Dynamical effects of unrecognized EBOV infection in social network
structure, 2) Unrecognized symptomatic EVD cases, barriers to care, and preventive behaviors, and 3)
Causes of asymptomatic EBOV infection. These findings have the potential to quantify what ended the Ebola
pandemic and improve mathematical models. Mathematical modeling applications will improve forecasting
during new outbreaks and inform ways to deliver vaccines to contacts, by ring vaccination or novel social
network algorithms.
As Ebola outbreaks continue to occur, two in 2018, this R01 proposal will provide lessons learned
that are immediately applicable to future outbreaks of EBOV, other viral hemorrhagic fevers, and emerging
infectious diseases.
!
项目概要
!
未识别的埃博拉病毒 (EBOV) 感染(无症状和有症状)对人的影响
人们对 2013 年至 2016 年西非埃博拉疫情期间的传播动态知之甚少。个人
患有无症状埃博拉病毒感染或未被识别的有症状埃博拉病毒病 (EVD) 的人代表
两组可能有不同程度的接触和埃博拉病毒传播率。日益
避免与埃博拉病毒病病例接触的保护行为可能会导致暴露水平降低,并且
这些暴露可能与无症状埃博拉病毒感染有关。另一方面,个人
患有埃博拉病毒病症状但从未被诊断出来可能对传播尤为重要
动态,因为其中一些人是导致埃博拉疫情爆发的传播链的一部分
以前未受影响的社区。
我们的研究问题侧重于了解埃博拉病毒传播的驱动因素
疫情下降。相互竞争的假设集中在预防行为、健康问题等方面。
寻求行为、接触者传播饱和度以及无症状埃博拉病毒感染。新
来自研究的可用、详细的血清学、社交网络、行为、人种学和疫苗接种数据
在利比里亚、塞拉利昂和刚果民主共和国的合作将使我们能够测试竞争
假设目标如下:1)社交网络中未被识别的埃博拉病毒感染的动态效应
结构,2) 未被识别的有症状的埃博拉病毒病病例、护理障碍和预防行为,以及 3)
无症状埃博拉病毒感染的原因。这些发现有可能量化结束埃博拉病毒的原因
流行病并改进数学模型。数学建模应用将改善预测
在新的疫情爆发期间,并告知如何通过环形疫苗接种或新的社交方式向接触者提供疫苗
网络算法。
随着埃博拉疫情持续发生(2018 年两次),此 R01 提案将提供经验教训
立即适用于未来埃博拉病毒、其他病毒性出血热和新出现的病毒爆发
传染病。
!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Travis Christian Porco其他文献
Travis Christian Porco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Travis Christian Porco', 18)}}的其他基金
Modeling of infectious network dynamics for surveillance, control and prevention enhancement (MINDSCAPE)
用于加强监测、控制和预防的感染网络动态建模 (MINDSCAPE)
- 批准号:
10220762 - 财政年份:2020
- 资助金额:
$ 34.01万 - 项目类别:
Modeling of infectious network dynamics for surveillance, control and prevention enhancement (MINDSCAPE)
用于加强监测、控制和预防的感染网络动态建模 (MINDSCAPE)
- 批准号:
10662399 - 财政年份:2020
- 资助金额:
$ 34.01万 - 项目类别:
Modeling of infectious network dynamics for surveillance, control and prevention enhancement (MINDSCAPE)
用于加强监测、控制和预防的感染网络动态建模 (MINDSCAPE)
- 批准号:
10462463 - 财政年份:2020
- 资助金额:
$ 34.01万 - 项目类别:
Ebola modeling: behavior, asymptomatic infection, and contacts
埃博拉模型:行为、无症状感染者和接触者
- 批准号:
10242840 - 财政年份:2019
- 资助金额:
$ 34.01万 - 项目类别:
"Modeling contact investigation and rapid response"
“建模接触者调查和快速反应”
- 批准号:
8531554 - 财政年份:2011
- 资助金额:
$ 34.01万 - 项目类别:
"Modeling contact investigation and rapid response"
“建模接触者调查和快速反应”
- 批准号:
8654479 - 财政年份:2011
- 资助金额:
$ 34.01万 - 项目类别:
"Modeling contact investigation and rapid response"
“建模接触者调查和快速反应”
- 批准号:
8882450 - 财政年份:2011
- 资助金额:
$ 34.01万 - 项目类别:
"Modeling contact investigation and rapid response"
“建模接触者调查和快速反应”
- 批准号:
8309997 - 财政年份:2011
- 资助金额:
$ 34.01万 - 项目类别:
"Modeling contact investigation and rapid response"
“建模接触者调查和快速反应”
- 批准号:
8505497 - 财政年份:2011
- 资助金额:
$ 34.01万 - 项目类别:
"Modeling contact investigation and rapid response"
“建模接触者调查和快速反应”
- 批准号:
8112261 - 财政年份:2011
- 资助金额:
$ 34.01万 - 项目类别:
相似海外基金
Developing deep learning algorithms for studying infant brain and behavior relationships
开发深度学习算法来研究婴儿大脑和行为关系
- 批准号:
10263607 - 财政年份:2021
- 资助金额:
$ 34.01万 - 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
- 批准号:
10001503 - 财政年份:2018
- 资助金额:
$ 34.01万 - 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
- 批准号:
9789318 - 财政年份:2018
- 资助金额:
$ 34.01万 - 项目类别:
CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
- 批准号:
1714672 - 财政年份:2017
- 资助金额:
$ 34.01万 - 项目类别:
Standard Grant
EAGER: Using Learning Algorithms to Morph Product Behavior for Specific Task Contexts and Cognitive Styles of Users
EAGER:使用学习算法针对特定任务环境和用户认知风格来改变产品行为
- 批准号:
1548234 - 财政年份:2015
- 资助金额:
$ 34.01万 - 项目类别:
Standard Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
- 批准号:
1559588 - 财政年份:2015
- 资助金额:
$ 34.01万 - 项目类别:
Continuing Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
- 批准号:
1254117 - 财政年份:2013
- 资助金额:
$ 34.01万 - 项目类别:
Continuing Grant
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2012
- 资助金额:
$ 34.01万 - 项目类别:
Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2011
- 资助金额:
$ 34.01万 - 项目类别:
Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2010
- 资助金额:
$ 34.01万 - 项目类别:
Collaborative Research and Development Grants