Ebola modeling: behavior, asymptomatic infection, and contacts

埃博拉模型:行为、无症状感染者和接触者

基本信息

项目摘要

Project Summary ! The impact of unrecognized Ebola virus (EBOV) infection (asymptomatic and symptomatic) on transmission dynamics during the 2013–2016 West Africa Ebola outbreak is poorly understood. Individuals who had asymptomatic EBOV infection or unrecognized symptomatic Ebola virus disease (EVD) represent two groups who may have had different levels of exposure and rates of EBOV transmission. Increasingly protective behaviors to avoid contact with EVD cases may have resulted in lower levels of exposure, and these exposures may be associated with asymptomatic EBOV infection. On the other hand, individuals who had symptomatic EVD but were never diagnosed may be disproportionately important to transmission dynamics because some of these individuals were part of transmission chains leading to Ebola outbreaks in previously unaffected communities. Our research question focuses on understanding the drivers of EBOV transmission leading to epidemic decline. Competing hypotheses were centered around issues of preventive behaviors, health- seeking behaviors, saturation of transmission among contacts, and asymptomatic EBOV infection. Newly available, detailed serologic, social network, behavioral, ethnographic, and vaccination data from research collaborations in Liberia, Sierra Leone, and Democratic Republic of Congo will allow us to test competing hypotheses in the following aims: 1) Dynamical effects of unrecognized EBOV infection in social network structure, 2) Unrecognized symptomatic EVD cases, barriers to care, and preventive behaviors, and 3) Causes of asymptomatic EBOV infection. These findings have the potential to quantify what ended the Ebola pandemic and improve mathematical models. Mathematical modeling applications will improve forecasting during new outbreaks and inform ways to deliver vaccines to contacts, by ring vaccination or novel social network algorithms. As Ebola outbreaks continue to occur, two in 2018, this R01 proposal will provide lessons learned that are immediately applicable to future outbreaks of EBOV, other viral hemorrhagic fevers, and emerging infectious diseases. !
项目摘要 好了! 未被识别的埃博拉病毒感染(无症状和有症状)对 2013-2016年西非埃博拉疫情期间的传播动态尚不清楚。个人 患有无症状埃博拉病毒感染或未被识别的症状性埃博拉病毒病(EVD)的人代表 两组可能有不同程度的接触和EBOV传播率。越来越多 避免接触埃博拉病例的防护行为可能导致接触水平较低,以及 这些暴露可能与无症状的EBOV感染有关。另一方面,那些 有症状但从未确诊的埃博拉病毒病可能对传播特别重要 动态,因为其中一些人是导致#年埃博拉疫情的传播链的一部分 以前未受影响的社区。 我们的研究问题集中在了解导致EBOV传播的驱动因素 疫情下降。相互竞争的假说围绕着预防行为、健康- 寻找行为、接触者之间的传播饱和以及无症状的EBOV感染。新开 来自研究的可用的详细的血清学、社会网络、行为、人种学和疫苗接种数据 在利比里亚、塞拉利昂和刚果民主共和国的合作将使我们能够测试竞争对手 以下假设:1)社会网络中未被识别的EBOV感染的动态效应 结构,2)未识别的症状性埃博拉病例、护理障碍和预防行为,以及3) 无症状EBOV感染的原因。这些发现有可能量化是什么导致了埃博拉疫情的结束 并改进数学模型。数学建模应用程序将改进预测 在新的疫情期间,并通过环状疫苗接种或新的社交网络向接触者提供疫苗的方法 网络算法。 随着埃博拉疫情继续发生,2018年将有两起,这项R01提案将提供经验教训 立即适用于未来爆发的EBOV、其他病毒性出血热和新出现的 传染病。 好了!

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Travis Christian Porco其他文献

Travis Christian Porco的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Travis Christian Porco', 18)}}的其他基金

Modeling of infectious network dynamics for surveillance, control and prevention enhancement (MINDSCAPE)
用于加强监测、控制和预防的感染网络动态建模 (MINDSCAPE)
  • 批准号:
    10220762
  • 财政年份:
    2020
  • 资助金额:
    $ 33.68万
  • 项目类别:
Modeling of infectious network dynamics for surveillance, control and prevention enhancement (MINDSCAPE)
用于加强监测、控制和预防的感染网络动态建模 (MINDSCAPE)
  • 批准号:
    10662399
  • 财政年份:
    2020
  • 资助金额:
    $ 33.68万
  • 项目类别:
Modeling of infectious network dynamics for surveillance, control and prevention enhancement (MINDSCAPE)
用于加强监测、控制和预防的感染网络动态建模 (MINDSCAPE)
  • 批准号:
    10462463
  • 财政年份:
    2020
  • 资助金额:
    $ 33.68万
  • 项目类别:
Ebola modeling: behavior, asymptomatic infection, and contacts
埃博拉模型:行为、无症状感染者和接触者
  • 批准号:
    10001553
  • 财政年份:
    2019
  • 资助金额:
    $ 33.68万
  • 项目类别:
"Modeling contact investigation and rapid response"
“建模接触者调查和快速反应”
  • 批准号:
    8531554
  • 财政年份:
    2011
  • 资助金额:
    $ 33.68万
  • 项目类别:
"Modeling contact investigation and rapid response"
“建模接触者调查和快速反应”
  • 批准号:
    8654479
  • 财政年份:
    2011
  • 资助金额:
    $ 33.68万
  • 项目类别:
"Modeling contact investigation and rapid response"
“建模接触者调查和快速反应”
  • 批准号:
    8882450
  • 财政年份:
    2011
  • 资助金额:
    $ 33.68万
  • 项目类别:
"Modeling contact investigation and rapid response"
“建模接触者调查和快速反应”
  • 批准号:
    8309997
  • 财政年份:
    2011
  • 资助金额:
    $ 33.68万
  • 项目类别:
"Modeling contact investigation and rapid response"
“建模接触者调查和快速反应”
  • 批准号:
    8505497
  • 财政年份:
    2011
  • 资助金额:
    $ 33.68万
  • 项目类别:
"Modeling contact investigation and rapid response"
“建模接触者调查和快速反应”
  • 批准号:
    8112261
  • 财政年份:
    2011
  • 资助金额:
    $ 33.68万
  • 项目类别:

相似海外基金

Developing deep learning algorithms for studying infant brain and behavior relationships
开发深度学习算法来研究婴儿大脑和行为关系
  • 批准号:
    10263607
  • 财政年份:
    2021
  • 资助金额:
    $ 33.68万
  • 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
  • 批准号:
    10001503
  • 财政年份:
    2018
  • 资助金额:
    $ 33.68万
  • 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
  • 批准号:
    9789318
  • 财政年份:
    2018
  • 资助金额:
    $ 33.68万
  • 项目类别:
CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
  • 批准号:
    1714672
  • 财政年份:
    2017
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Standard Grant
EAGER: Using Learning Algorithms to Morph Product Behavior for Specific Task Contexts and Cognitive Styles of Users
EAGER:使用学习算法针对特定任务环境和用户认知风格来改变产品行为
  • 批准号:
    1548234
  • 财政年份:
    2015
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Standard Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
  • 批准号:
    1559588
  • 财政年份:
    2015
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Continuing Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
  • 批准号:
    1254117
  • 财政年份:
    2013
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Continuing Grant
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了