Gallium Based Mechanically Adaptable Microelectrode Arrays
镓基机械适应性微电极阵列
基本信息
- 批准号:10057878
- 负责人:
- 金额:$ 41.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectBasic ScienceBenchmarkingBiomedical ResearchBody TemperatureBuffersChronicClinicalClinical ResearchDevelopmentDevicesDiffuseDimensionsElectrodesElectrophysiology (science)EnvironmentFailureForeign BodiesGalliumGlassImplantImplantation procedureInflammationLesionLiquid substanceLongevityMeasurementMechanicsMetalsMicroelectrodesModelingModulusMotor CortexNeurologicOutcomePerformancePhysiologicalPolymersProceduresProcessPropertyRattusResearchRodent ModelSignal TransductionSiliconSolidStructureStudy modelsSystemTemperatureTestingThickTimeTissuesUtahbasebiomaterial compatibilitybrain tissuedensitydesignelectric impedanceelectrical propertyflexibilityfundamental researchimprovedin vivoinnovationmanufacturing processmechanical propertiesmeltingnext generationpressureresponsesealtool
项目摘要
Project Summary: Next Generation Mechanically Adaptable Microelectrode
Implantable microelectrodes are essential tools for understanding basic electrophysiology. Although
considerable progress has been made in the past several decades in terms of electrode design, the current
devices are still unable to retain their functionalities in a physiological environment over long periods, due to
failure is related to the staggering mismatch between the mechanical properties of the electrodes and tissue.
There have been significant research efforts in the development of flexible implantable electrodes. However,
the flexible electrode will buckle during insertion and require rigid shuttle/coating to penetrate the targeted
issue The complications of tissue insertion has significantly hindered the practical usage of the flexible
implantable electrodes. In this project, we will take an innovative material approach to develop a new class of
thermo-responsive and mechanically adaptable microelectrode between room temperature and physiological
temperature. We will harness the unique thermal/mechanical/electrical properties of gallium to design a
mechanically adaptable electrode array. Gallium has a unique melting point of 29.36 °C at 1 atm pressure.
This indicates gallium will be a rigid solid at room temperature (Young's modulus of 10 GPa) and a liquid (no
mechanical strength) at body temperature. We aim to develop a thermal drawing process to create
gallium/polymer core-shell structure and assemble the structures into microelectrode array. We will assess the
mechanical properties, electrochemical performance, in vivo signal recording ability, and biocompatibility of the
gallium-based microelectrode arrays.
项目摘要:下一代机械适应性微电极
植入式微电极是了解基本电生理学的重要工具。虽然
在过去的几十年中,在电极设计方面已经取得了相当大的进展,
设备仍然不能在生理环境中长时间保持其功能,
失效与电极和组织的机械性能之间的惊人的不匹配有关。
在柔性植入式电极的开发方面已经进行了大量的研究工作。然而,在这方面,
柔性电极将在插入过程中弯曲
组织插入的并发症已经显著阻碍了柔性组织的实际使用。
可植入电极。在这个项目中,我们将采取创新的材料方法来开发一种新的
在室温和生理温度之间的温度响应和机械适应性微电极
温度我们将利用镓独特的热/机械/电特性来设计一种
机械适应性电极阵列。镓在1个大气压下具有29.36 °C的独特熔点。
这表明镓在室温下是刚性固体(杨氏模量为10 GPa),而在室温下是液体(没有
机械强度)。我们的目标是开发一种热拉伸工艺,
镓/聚合物核壳结构,组装成微电极阵列。我们将评估
的机械性能、电化学性能、体内信号记录能力和生物相容性。
镓基微电极阵列。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HUANAN ZHANG其他文献
HUANAN ZHANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HUANAN ZHANG', 18)}}的其他基金
3D Printed Configurable and Themoresponsive Intracortical Electrode Array Platform
3D 打印可配置和热响应皮质内电极阵列平台
- 批准号:
10883867 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
相似海外基金
HNDS-R: Connectivity, Inclusiveness, and the Permeability of Basic Science
HNDS-R:基础科学的连通性、包容性和渗透性
- 批准号:
2318404 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
Standard Grant
Advancing the basic science of membrane permeability in macrocyclic peptides
推进大环肽膜渗透性的基础科学
- 批准号:
10552484 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
- 批准号:
10576701 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
Bringing together communities and basic science researchers to build stronger relationships
将社区和基础科学研究人员聚集在一起,建立更牢固的关系
- 批准号:
480914 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
Miscellaneous Programs
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
- 批准号:
FL210100071 - 财政年份:2022
- 资助金额:
$ 41.94万 - 项目类别:
Australian Laureate Fellowships
Coordinating and Data Management Center for Translational and Basic Science Research in Early Lesions
早期病变转化和基础科学研究协调和数据管理中心
- 批准号:
10517004 - 财政年份:2022
- 资助金额:
$ 41.94万 - 项目类别:
Developing science communication on large scale basic science represented by accelerator science
发展以加速器科学为代表的大规模基础科学科学传播
- 批准号:
22K02974 - 财政年份:2022
- 资助金额:
$ 41.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic Science Core - Biosafety & Biocontainment Core (BBC)
基础科学核心 - 生物安全
- 批准号:
10431468 - 财政年份:2022
- 资助金额:
$ 41.94万 - 项目类别:














{{item.name}}会员




