Reinforcement Learning Neuropathologies Underlying Psychiatric Sequelae in Traumatic Brain Injury
脑外伤后遗症的强化学习神经病理学
基本信息
- 批准号:10130954
- 负责人:
- 金额:$ 19.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至 2020-07-14
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Summary for Hogeveen Research Project
The overarching goals of the current COBRE mentored PI project are to better understand, and precisely modulate, the neurocomputational mechanisms underlying apathy in patients with chronic moderate-to-severe traumatic brain injury (msTBI). Previous studies have established that apathy-characterized by a loss of motivation-is a common and debilitating symptom of msTBi, but the underlying neural pathologies causing apathy in msTBI remain unknown. Clinically, existing treatments for apathy in msTBi have limited efficacy, either due to their reliance on high-level cognitive abilities that are often impaired in msTBI (e.g. cognitive behavioral therapy), or their potential to induce unwanted and deleterious side effects due to a lack of circuit-specificity (e.g. pharmacotherapies that modulate dopaminergic tone throughout the brain). Therefore, there are significant needs for i) rigorous experimental neuroscience studies on the specific motivated behavior circuits that-when damaged-cause apathy in msTBI, and ii) the development of circuit-specific approaches for modulating motivation circuits in apathetic patients, not reliant on high-level cognitive functioning. In this project, the PI will use task-based functional magnetic resonance imaging (fMRI) to determine whether apathy in msTBI is associated with damage to the functional neural circuits involved in computing the anticipated reward value of stimuli in the environment (i.e., stimulus valuation), and/or damage to the circuits involved in determining whether a given reward is worth the effort required to obtain it (i.e., willingness-to-engage effort). Additionally, the PI will leverage the insights derived from this msTBI project to determine whether task fMRI-guided repetitive transcranial magnetic stimulation (rTMS) is a viable approach for circuit-specific modulation of value and effort circuits. By establishing the effectiveness of fMRI-guided rTMS for selectively engaging value and effort computation circuits, this project will form the bedrock for future R01 projects refining personalized rTMS approaches for treating neurological and psychiatric patients experiencing a loss of motivation.
The PI’s goal is to build a world-class human neuroscience laboratory that develops innovative methods for characterizing and stimulating the neural circuits underlying aberrant motivated behavior through independent R01 funding. The current mentored PI project provides an ideal opportunity for the PI to jump-start this research program. The senior mentors Drs. Mayer and Pierio Richardson have proven trach records with NIH funding and extensive experience using fMRI to elucidate the functional deficits caused by TBI (Dr. Mayer) and using rTMS as a treatment for neurological patients (Dr. Pirio Richardson). Additionally, two leading scientists (Drs. Husain, Claus, and Costa) who conduct state-of-the-art research on the neurocomputational bases of motivated behavior and its pathologies have committed to consult on the proposed project. Therefore, the advisory committee will be well-suited to guide the PI as he leads this project, and will facilitate his transition to becoming an independent R01-funded investigator.
Hogeveen研究项目的项目摘要
当前COBRE指导PI项目的总体目标是更好地理解和精确调节慢性中重度创伤性脑损伤(msTBI)患者冷漠的神经计算机制。 以前的研究已经确定,冷漠的特点是失去动力,是一种常见的和衰弱的症状msTBI,但潜在的神经病理导致冷漠msTBI仍然未知。 在临床上,用于msTBI中的冷漠的现有治疗具有有限的功效,这是由于它们依赖于在msTBI中经常受损的高水平认知能力(例如认知行为疗法),或者由于缺乏回路特异性(例如调节整个大脑的多巴胺能张力的药物疗法),它们可能诱导不想要的和有害的副作用。 因此,有显着的需求,i)严格的实验神经科学研究的具体动机行为电路,当损坏时,导致冷漠的msTBI,和ii)电路的发展,具体的方法来调节动机电路冷漠的患者,不依赖于高层次的认知功能。 在本项目中,PI将使用基于任务的功能性磁共振成像(fMRI)来确定msTBI中的冷漠是否与计算环境中刺激的预期奖励值(即,刺激评价),和/或对涉及确定给定奖励是否值得获得它所需的努力的电路的损害(即,(willingness to engage effort) 此外,PI将利用从该msTBI项目中获得的见解来确定任务fMRI引导的重复经颅磁刺激(rTMS)是否是价值和努力回路的回路特定调制的可行方法。 通过建立fMRI引导的rTMS选择性地参与价值和努力计算电路的有效性,该项目将成为未来R 01项目的基石,该项目将改进个性化的rTMS方法,用于治疗失去动力的神经和精神病患者。
PI的目标是建立一个世界级的人类神经科学实验室,通过独立的R 01资金开发创新方法,用于表征和刺激异常动机行为背后的神经回路。 目前指导PI项目提供了一个理想的机会,PI启动这一研究计划。 Mayer博士和Pierio Richardson博士已经证明了NIH资助的trach记录和使用fMRI阐明TBI引起的功能缺陷的丰富经验(Mayer博士)以及使用rTMS作为神经系统患者的治疗(Pirio Richardson博士)。 此外,两位领先的科学家(Husain,Claus和Costa博士)对动机行为及其病理学的神经计算基础进行了最先进的研究,他们承诺就拟议的项目提供咨询。 因此,咨询委员会将非常适合指导PI领导本项目,并将促进其成为R 01资助的独立研究者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremy P Hogeveen其他文献
Jeremy P Hogeveen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeremy P Hogeveen', 18)}}的其他基金
Neurodevelopment of exploration and alcohol problems in adolescence
青春期探索和酒精问题的神经发育
- 批准号:
10628964 - 财政年份:2023
- 资助金额:
$ 19.83万 - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
Collaborative R&D
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
- 批准号:
10110118 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
EU-Funded
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
- 批准号:
10073285 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
- 批准号:
LP230100439 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
Linkage Projects
Learning to Reason in Reinforcement Learning
在强化学习中学习推理
- 批准号:
DP240103278 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
Discovery Projects
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
- 批准号:
DE240100201 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
Discovery Early Career Researcher Award
Trustworthy Hypothesis Transfer Learning
可信假设迁移学习
- 批准号:
DE240101089 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
Discovery Early Career Researcher Award
Developing and Visualising a Retrieval-Augmented Deep Learning Model for Population Health Management
开发和可视化用于人口健康管理的检索增强深度学习模型
- 批准号:
2905946 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
Studentship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
- 批准号:
EP/X033244/1 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
Research Grant