Multi-parametric Integrated Molecular Detection of SARS-CoV-2 from Biofluids by Adapting Single Extracellular Vesicle Characterization Technologies
采用单细胞外囊泡表征技术对生物体液中的 SARS-CoV-2 进行多参数集成分子检测
基本信息
- 批准号:10266279
- 负责人:
- 金额:$ 90万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-21 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVACE2AntibodiesAntibody ResponseAwardBiological AssayBiological ModelsBiometryBiotechnologyBody FluidsBypassCOVID-19COVID-19 detectionCOVID-19 diagnosisCOVID-19 patientCOVID-19 testCellsCharacteristicsClinicalClinical MicrobiologyColumn ChromatographyCommunicable DiseasesCommunicationCoronavirusDetectionDevelopmentDevicesDiagnosisDiseaseDoctor of PhilosophyDocumentationEmergency SituationEngineeringEnzyme-Linked Immunosorbent AssayFDA Emergency Use AuthorizationFluorescenceGlycoproteinsHealthcareHospitalsHumanImmunoglobulin GImmunoglobulin MIn SituIndividualInfectionInstitutesKnowledgeLabelLaboratoriesLicensingLocationMeasurementMediatingMedical centerMembraneMembrane ProteinsMethodsMicrofluidicsMolecularMolecular Sieve ChromatographyNanotechnologyNatureNucleic Acid Amplification TestsNucleic AcidsOhioParticulatePatientsPhasePhysiciansPlasmaPneumoniaPolymerase Chain ReactionPopulationProductionProteinsRNARNA VirusesRadiologic HealthReaderResearch PersonnelRetroviridaeReverse TranscriptionRiskSARS-CoV-2 exposureSARS-CoV-2 positiveSalivaSamplingSensitivity and SpecificitySerology testSerumServicesSignal TransductionSorting - Cell MovementSpeedSurfaceSystemSystems BiologyTechnologyTestingUnited States National Institutes of HealthUniversitiesValidationVesicleViralViral AntibodiesViral Load resultViral ProteinsVirusWorld Health Organizationantigen testbasebiochipcommercializationcomparativedesigndetection methodemerging pathogenexosomeexperienceexperimental studyextracellularextracellular vesiclesfluorescence microscopeimprovedinterestisothermal amplificationmicrofluidic technologymultidisciplinarynanobiotechnologynanofabricationnasopharyngeal swabnew technologynovel coronaviruspandemic diseaseparticlepoint of careprognosticprotein expressionresearch clinical testingsaliva samplesample collectionscale upstandard of careviral RNAviral detection
项目摘要
Abstract
The World Health Organization has recognized a global pandemic of novel coronavirus pneumonia (COVID-19)
from exposure to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronaviruses (CoVs)
are membrane-enveloped positive-sense, single-stranded RNA viruses decorated with membrane proteins. The
spike (S) glycoprotein is implicated in the viral attachment and fusion to host cells via the human angiotensin-
converting enzyme 2 (hACE2). There are different assays to test for COVID-19, including nucleic acid, antigen,
and serological tests that can be used in hospitals, point-of-care, and large-scale population testing. Nucleic acid
testing is the standard method for the detection of SARS-CoV-2, which consists of the amplification of viral RNA
from nasopharyngeal swabs (NPS) by quantitative reverse-transcription polymerase chain reaction (qRT-PCR).
Furthermore, given the invasive nature of NPS, saliva is being considered an alternative for detection. Methods
that bypass RNA extraction, as well as isothermal amplification such as loop-mediated isothermal amplification
(LAMP), have been developed to improve the speed of viral RNA detection. However, viral protein expression
cannot be detected by qRT-PCR. Serological tests, on the other hand, are based on host antibodies against the
virus (IgG/IgM). Although fast, these tests suffer from significant false negative/positive. Besides, they do not
detect a current infection. Therefore, to relieve the current healthcare crisis, new technologies capable of
simultaneous viral RNA/protein detection at the single virus level and host antibody response detection from a
body fluid in an integrated device would be highly valuable for enhanced COVID-19 diagnosis.
Recently, our group, as part of Phase 2 of the Extracellular RNA Communication Consortium (ERCC2), has
successfully developed a microfluidics technology capable of capturing individual exosomes from biofluids and
then simultaneously quantify both exosomal surface proteins and RNA cargo. Given the resemblance in size
and other characteristics between exosomes and coronaviruses, our technology can be adapted for COVID-19
diagnosis. Therefore, we propose to develop and validate a safe-to-use version of our microfluidics system for
direct detection of SARS-CoV-2. The integrated system is capable of multi-parametric detection for enhanced
COVID-19 diagnosis. The platform will be engineered to simultaneously quantify both viral protein, viral RNA,
and host antibodies (IgG/IgM) in the same sample, enabling diagnosis, disease status, and prognostic
assessment. Model systems, including host IgG/IgM from patient serum, standard synthetic vesicles (SVs), and
heat-inactivated SARS-CoV-2 viral particles (SVVs), will be designed and spiked in biofluids to validate and
calibrate the system. To demonstrate the clinical utility, our biochip technology will be deployed and tested using
different biofluids from COVID-19 patients at two independent laboratories (Institute of Systems Biology in
Seattle and The Ohio State University (OSU) Wexner Medical Center in Columbus). Measurements obtained
from the biochips will be compared to standard qRT-PCR and ELISA methods. A transition plan will be prepared
for FDA Emergency Use Authorization (EUA) application of the biochip technology through a COVID-19 clinical
testing laboratory at OSU Wexner Medical Center. A commercialization plan will also be developed via licensing
to a biotech company.
We have assembled a multi-disciplinary team with extensive knowledge and experience in nanobiotechnology,
microfluidics, micro/nano-fabrication, infectious diseases, and clinical COVID-19 patient sample collection and
testing. The proposed aims and milestones are given as follows:
Specific Aim 1: Development of an integrated biochip to simultaneously capture, fix, and characterize
single SARS-CoV-2 and IgG/IgM proteins. Milestones. (i) Sorting, capture, and quantitative analysis of
selected proteins and viral RNA in single virus in spike experiments with >95% repeatability; (ii) A sensitivity of
single virus detection with >90% repeatability and 5-fold better sensitivity than the current qRT-PCR and ELISA
methods. Specific Aim 2: Testing of single SARS-CoV-2 virus and associated IgG/IgM in biofluids from
COVID-19 patients. Milestones. (i) Quantitative analysis of clinical samples with >95% repeatability; (ii) 95%
of concordance for the detection of SARS-CoV-2 between the biochip technology and the lab-based qRT-PCR
and ELISA. Specific Aim 3: Biochip technology transition plan. Milestones. (i) Submission of documentation
to the FDA Center for Devices and Radiological Health (CDRH) for EUA; (ii) Scale-up commercialization plan for
GMP chip production.
摘要
世界卫生组织已确认新型冠状病毒肺炎(新冠肺炎)在全球范围内大流行
因接触严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)。冠状病毒(CoV)
是被膜包裹的正义单链RNA病毒,上面装饰着膜蛋白。这个
SPEKE(S)糖蛋白通过人血管紧张素-1参与病毒对宿主细胞的附着和融合。
转化酶2(HACE2)。新冠肺炎有不同的检测方法,包括核酸、抗原、
以及可用于医院、医疗点和大规模人口检测的血清学检测。核酸
检测是检测SARS-CoV-2的标准方法,包括病毒RNA的扩增
用定量逆转录聚合酶链式反应(qRT-PCR)从鼻咽拭子中提取。
此外,考虑到NPS的侵袭性,唾液被认为是检测的一种替代方法。方法
绕过RNA提取和等温扩增,如环介导的等温扩增
为了提高病毒RNA检测的速度,已经开发了(LAMP)。然而,病毒蛋白的表达
不能用qRT-PCR检测到。另一方面,血清学测试是基于宿主抗体对
病毒(Ig G/Ig M)。虽然这些检测速度很快,但存在严重的假阴性/阳性。此外,他们也不会
检测当前感染。因此,为了缓解目前的医疗危机,新技术能够
同时检测单个病毒水平的病毒RNA/蛋白质和宿主抗体反应
一个集成设备中的体液对于增强新冠肺炎的诊断将具有非常高的价值。
最近,作为细胞外RNA通讯联盟(ERCC2)第二阶段的一部分,我们的小组已经
成功开发了一种微流体技术,能够从生物体液中捕获单个外切体,并
然后同时定量外体表面蛋白和RNA货物。鉴于它们在尺寸上的相似性
和其他特征,我们的技术可以适用于新冠肺炎
诊断。因此,我们建议开发和验证我们的微流体系统的安全使用版本,用于
直接检测SARS-CoV-2。该集成系统能够对增强型多参数进行检测
新冠肺炎诊断。该平台将被设计成同时定量病毒蛋白、病毒RNA、
和宿主抗体(IgG/IgM)在同一样本中,使诊断、疾病状态和预后成为可能
评估。模型系统,包括来自患者血清的宿主IgG/IgM,标准合成囊泡(SVS),以及
热灭活SARS-CoV-2病毒颗粒(SVV)将被设计并添加到生物液中,以验证和
校准系统。为了证明临床用途,我们的生物芯片技术将被部署和测试,使用
来自两个独立实验室的新冠肺炎患者的不同生物液(系统生物学研究所在
西雅图和俄亥俄州立大学(OSU)哥伦布的韦克斯纳医学中心)。已获得的测量值
从生物芯片中提取的DNA将与标准的qRT-PCR和ELISA法进行比较。将制定一项过渡计划
通过新冠肺炎临床中心申请FDA紧急使用授权(EUA)的生物芯片技术
俄亥俄州立大学韦克斯纳医学中心的检测实验室。还将通过许可方式制定商业化计划
一家生物科技公司。
我们已经组建了一支在纳米生物技术方面拥有丰富知识和经验的多学科团队,
微流体、微纳制造、传染病、临床新冠肺炎患者样本采集和
测试。建议的目标和里程碑如下:
具体目标1:开发一种可同时捕获、固定和表征的集成生物芯片
单一的SARS-CoV-2和Ig G/Ig M蛋白。里程碑。(一)分类、捕获和定量分析
单个病毒中选定的蛋白质和病毒RNA在尖峰实验中具有95%的重复性;(Ii)敏感性
单一病毒检测的重复性为90%,灵敏度比目前的qRT-PCR和ELISA高5倍
方法:研究方法。特定目标2:检测SARS-CoV-2单个病毒及其相关的免疫球蛋白/免疫球蛋白M
新冠肺炎患者。里程碑。(I)临床样本的定量分析,重复性为95%;(Ii)95%
生物芯片技术与实验室QRT-PCR检测SARS-CoV-2的一致性研究
还有伊莉莎。具体目标3:生物芯片技术过渡计划。里程碑。(I)提交文件
向FDA设备和辐射健康中心(CDRH)提供EUA;(Ii)扩大商业化计划
GMP芯片生产。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ly James Lee其他文献
Ly James Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ly James Lee', 18)}}的其他基金
Extracellular Vesicles in Small Cell Lung Cancer Early Detection
小细胞肺癌早期检测中的细胞外囊泡
- 批准号:
10115627 - 财政年份:2017
- 资助金额:
$ 90万 - 项目类别:
Large Scale Nanochannel Electroporation (NEP) for Cell Reprogramming
用于细胞重编程的大规模纳米通道电穿孔 (NEP)
- 批准号:
8583897 - 财政年份:2013
- 资助金额:
$ 90万 - 项目类别:
Plasma RNA based Early Lung Cancer Detection by Tethered Cationic Lipoplex Assay
通过系留阳离子脂质复合物检测进行基于血浆 RNA 的早期肺癌检测
- 批准号:
8570641 - 财政年份:2013
- 资助金额:
$ 90万 - 项目类别:
Plasma RNA based Early Lung Cancer Detection by Tethered Cationic Lipoplex Assay
通过系留阳离子脂质复合物检测进行基于血浆 RNA 的早期肺癌检测
- 批准号:
8735903 - 财政年份:2013
- 资助金额:
$ 90万 - 项目类别:
Large Scale Nanochannel Electroporation (NEP) for Cell Reprogramming
用于细胞重编程的大规模纳米通道电穿孔 (NEP)
- 批准号:
8702172 - 财政年份:2013
- 资助金额:
$ 90万 - 项目类别:
Large Scale Nanochannel Electroporation (NEP) for Cell Reprogramming
用于细胞重编程的大规模纳米通道电穿孔 (NEP)
- 批准号:
8774717 - 财政年份:2013
- 资助金额:
$ 90万 - 项目类别:
A Renewal Proposal for the Nanoscale Science and Engineering Center (NSEC) for Affordable Nanoengineering of Polymeric Biomedical Devices
纳米科学与工程中心 (NSEC) 的更新提案,以实现经济实惠的聚合物生物医学设备纳米工程
- 批准号:
0914790 - 财政年份:2009
- 资助金额:
$ 90万 - 项目类别:
Cooperative Agreement
Novel Micro/nanofluidic Electroporation Devices for DNA&Oligonucleotide Delivery
新型 DNA 微/纳流体电穿孔装置
- 批准号:
7498973 - 财政年份:2007
- 资助金额:
$ 90万 - 项目类别:
Novel Micro/nanofluidic Electroporation Devices for DNA&Oligonucleotide Delivery
新型 DNA 微/纳流体电穿孔装置
- 批准号:
7363207 - 财政年份:2007
- 资助金额:
$ 90万 - 项目类别:
NSEC: Center for Affordable Nanoengineering of Polymer Biomedical Devices (CANPBD)
NSEC:经济实惠的聚合物生物医学设备纳米工程中心 (CANPBD)
- 批准号:
0425626 - 财政年份:2004
- 资助金额:
$ 90万 - 项目类别:
Cooperative Agreement
相似国自然基金
新型蝙蝠MERS簇冠状病毒HKU5的ACE2细胞受体识别及其分子机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
铁皮石斛通过肠道 ACE2 修复 Trp/GPR142 介
导“肠-胰岛 ”轴血糖调控功能的降糖机制研
究
- 批准号:Y24H280055
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
人类ACE2变构抑制剂的成药性及其抗广谱冠状病毒感染的机制研究
- 批准号:82330111
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
CAFs来源的外泌体负性调控ACE2促进肾透明细胞癌癌栓新辅助靶向耐药的机制研究
- 批准号:82373169
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
新型蝙蝠MERS簇冠状病毒HKU5的ACE2受体识别及细胞入侵机制研究
- 批准号:32300137
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于AT2/ACE2/Ang(1-7)/MAS轴调控心脏-血管-血液系统性重构演变规律研究心衰气虚血瘀证及其益气通脉活血化瘀治法生物学基础
- 批准号:82305216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体miRNAs介导细胞通讯的大豆ACE2激活肽调控血管稳态机制研究
- 批准号:32302080
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
感毒清经ACE2/Ang(1-7)/MasR信号通路抑制PM2.5诱导慢性气道炎症的机制:聚焦肺泡巨噬细胞极化与“胞葬”的表型串扰
- 批准号:82305171
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
刺参自溶引发机制中ACE2调控靶点的调控网络研究
- 批准号:32372399
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
Spike变异对新冠病毒抗原性及ACE2种属嗜性的影响研究
- 批准号:82272305
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
新型コロナウイルス感染阻害能を有する抗ACE2抗体の阻害機構に関する構造基盤解明
阐明具有抑制新型冠状病毒感染能力的抗ACE2抗体抑制机制的结构基础
- 批准号:
24K09338 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ACE2のユビキチン化を介したコロナウイルス感染機構の解明と創薬への挑戦
通过ACE2泛素化阐明冠状病毒感染机制和药物发现的挑战
- 批准号:
22KJ2499 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Grant-in-Aid for JSPS Fellows
ACE2阻害薬およびERK経路阻害薬による慢性腎炎進展抑制効果の検証
ACE2抑制剂和ERK通路抑制剂抑制慢性肾炎进展的效果验证
- 批准号:
23K14982 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Large-scale compatibility assessments between ACE2 proteins and diverse sarbecovirus spikes
ACE2 蛋白和多种 sarbecovirus 尖峰之间的大规模兼容性评估
- 批准号:
10722852 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
一次線毛とコロナウイルス感染におけるACE2の役割の解明
阐明 ACE2 在原发菌毛和冠状病毒感染中的作用
- 批准号:
22KF0004 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The regulatory roles of ACE2 and its interaction with Nrf2 in arsenic-induced endothelial dysfunction in experimental and epidemiological studies
实验和流行病学研究中 ACE2 的调节作用及其与 Nrf2 的相互作用在砷诱导的内皮功能障碍中的作用
- 批准号:
23K16310 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Role of ACE2 in the mechanism of intestinal regeneration
ACE2在肠道再生机制中的作用
- 批准号:
23K15078 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research and development of a novel pediatric anti-obesity medicine via ACE2 activation in DIZE
通过 DIZE 中 ACE2 激活研发新型儿科抗肥胖药物
- 批准号:
23K15417 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Lung delivery of novel ACE2 variants for COVID-19
针对 COVID-19 的新型 ACE2 变体的肺部输送
- 批准号:
10483042 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
ACE2 on gut barrier dysfunction and BRB disruption
ACE2 对肠道屏障功能障碍和 BRB 破坏的影响
- 批准号:
10535485 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别: