Tensor Array Methods for RNA-Seq Analysis

用于 RNA 测序分析的张量阵列方法

基本信息

  • 批准号:
    10267754
  • 负责人:
  • 金额:
    $ 22.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-31 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY RNA-Sequencing (RNA-Seq) analysis provides a critical means to understand gene functions. High-throughput RNA-Seq data are frequently measured under multiple conditions from the same set of samples. For example, in the NIH Common Fund’s Genotype-Tissue Expression (GTEx) project, samples from different tissues are collected from each post-mortem donor for sequencing. For another study on ultraviolet (UV) radiation, skin keratinocytes from the same set of subjects are exposed to different radiation doses and durations before sequencing. Such common-sample, multi-condition RNA-Seq data have information shared across both samples and conditions, and have the potential to provide key insights into gene functions. However, despite great endeavors to collect such data, there is a lack of analytical methods and computational tools to maximize their potential. Important tasks such as missing data imputation, functional gene module identification and association analysis remain unaddressed. In this proposal, we will build an innovative and powerful paradigm to analyze multi-condition RNA-Seq data and thus improve our understanding of gene functions. To leverage information across conditions, samples and genes simultaneously, we propose to model RNA-Seq data as multi-way tensor arrays. We will develop novel tensor methods and theory that are appropriate for read count data. In particular, our first aim is to extend tensor completion methods for block-wise missing RNA-Seq data imputation. By modeling unobserved samples as missing blocks in a tensor, we will aggregate information along different modes (subjects, conditions, genes) to impute missing values. The second aim develops flexible tensor co-clustering methods, which simultaneously cluster genes, samples and conditions, for co- expressed gene module identification. The third aim is to build new tensor response regression models to associate gene modules with genotype and covariates which will provide insights into genetic regulation such as expression quantitative trait loci (eQTL). Finally, in the fourth aim, we will develop scalable statistical software to implement the proposed methods and make them more broadly applicable. We will apply the methods to the GTEx multi-tissue data and UV multi-condition data, and gain novel insights into gene expression and regulation. The proposed research will likely transform how we analyze multi-condition RNA- Seq data and enhance our understanding of human genomics and its relation to public health.
项目摘要 RNA测序(RNA-Seq)分析提供了了解基因功能的关键手段。高通量 RNA-Seq数据经常在多种条件下从同一组样品中测量。比如说, 在NIH共同基金的基因型-组织表达(GTEx)项目中, 从每个死后捐献者身上采集样本进行测序另一项关于紫外线辐射的研究, 将来自同一组受试者的角质形成细胞暴露于不同的辐射剂量和持续时间, 测序这样的共同样本,多条件RNA-Seq数据具有跨两个系统共享的信息。 样本和条件,并有可能提供有关基因功能的关键见解。但尽管 尽管我们努力收集这些数据,但缺乏分析方法和计算工具来最大限度地提高 他们的潜力重要的任务,如缺失数据填补,功能基因模块识别和 关联分析仍然没有解决。在这份提案中,我们将建立一个创新和强大的范式, 分析多条件RNA-Seq数据,从而提高我们对基因功能的理解。利用 同时跨条件,样品和基因的信息,我们建议将RNA-Seq数据建模为 多路张量阵列。我们将开发新的张量方法和理论,适用于读取计数 数据特别是,我们的第一个目标是扩展张量完成方法,用于块式缺失的RNA-Seq数据 归责通过将未观察到的样本建模为张量中的缺失块,我们将聚合信息 沿着不同的模式(受试者、条件、基因)来插补缺失值。第二个目标是发展 灵活的张量共聚类方法,同时聚类基因,样本和条件,共 表达基因模块鉴定。第三个目标是建立新的张量响应回归模型, 将基因模块与基因型和协变量相关联,这将为遗传调控提供见解, 表达数量性状基因座(eQTL)。最后,在第四个目标中,我们将开发可扩展的统计 软件来实现所提出的方法,使它们更广泛地适用。我们将应用 GTEx多组织数据和UV多条件数据的方法,并获得对基因的新见解 表达和调节。这项研究可能会改变我们分析多条件RNA的方式。 Seq数据和增强我们对人类基因组学及其与公共卫生关系的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gen Li其他文献

Gen Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gen Li', 18)}}的其他基金

Tensor Array Methods for RNA-Seq Analysis
用于 RNA 测序分析的张量阵列方法
  • 批准号:
    10214847
  • 财政年份:
    2020
  • 资助金额:
    $ 22.47万
  • 项目类别:
Tensor Array Methods for RNA-Seq Analysis
用于 RNA 测序分析的张量阵列方法
  • 批准号:
    10581543
  • 财政年份:
    2020
  • 资助金额:
    $ 22.47万
  • 项目类别:
Tensor Array Methods for RNA-Seq Analysis
用于 RNA 测序分析的张量阵列方法
  • 批准号:
    10356949
  • 财政年份:
    2020
  • 资助金额:
    $ 22.47万
  • 项目类别:

相似海外基金

Elucidation of the role of perivascular macrophages in stroke using animal models for disease and autopsy brains
使用疾病动物模型和尸检脑阐明血管周围巨噬细胞在中风中的作用
  • 批准号:
    23K09773
  • 财政年份:
    2023
  • 资助金额:
    $ 22.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pathways to enrolling diverse Latinos in autopsy studies: Insights from a largelongitudinal study
让不同拉丁裔参加尸检研究的途径:大型纵向研究的见解
  • 批准号:
    10592154
  • 财政年份:
    2023
  • 资助金额:
    $ 22.47万
  • 项目类别:
Construction of the history of forensic medicine through medical and legal historiographical examination of autopsy reports from the founding period of medico-legal autopsy.
通过对法医学尸检创立时期尸检报告的医学和法律史学检查来构建法医学史。
  • 批准号:
    23K12072
  • 财政年份:
    2023
  • 资助金额:
    $ 22.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
In situ and digital spatial profiling of the active HIV reservoir in autopsy-derived tissues
尸检组织中活性 HIV 储存库的原位和数字空间分析
  • 批准号:
    10459933
  • 财政年份:
    2022
  • 资助金额:
    $ 22.47万
  • 项目类别:
Tissue Core-UNMC Rapid Autopsy Program
组织核心-UNMC快速尸检项目
  • 批准号:
    10707538
  • 财政年份:
    2022
  • 资助金额:
    $ 22.47万
  • 项目类别:
Developing an innovative statistical framework to integrate multiple verbal autopsy datasets to estimate cause-specific mortality
开发创新的统计框架来整合多个口头尸检数据集,以估计特定原因的死亡率
  • 批准号:
    10710402
  • 财政年份:
    2022
  • 资助金额:
    $ 22.47万
  • 项目类别:
Tissue Core-UNMC Rapid Autopsy Program
组织核心-UNMC快速尸检项目
  • 批准号:
    10518245
  • 财政年份:
    2022
  • 资助金额:
    $ 22.47万
  • 项目类别:
Harmonizing Multiple Data Sources And Psychological Autopsy To Characterize Suicides Among Opioid-Related Deaths
协调多个数据源和心理尸检来描述阿片类药物相关死亡中的自杀特征
  • 批准号:
    10426651
  • 财政年份:
    2022
  • 资助金额:
    $ 22.47万
  • 项目类别:
Search for new biomarkers to assess cardiotoxicity: integrated analysis in autopsy heart
寻找新的生物标志物来评估心脏毒性:尸检心脏的综合分析
  • 批准号:
    22K06956
  • 财政年份:
    2022
  • 资助金额:
    $ 22.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Histological examination of cardiac amyloid deposition and analysis of risk factors for sudden death: a forensic autopsy series.
心脏淀粉样蛋白沉积的组织学检查和猝死危险因素分析:法医尸检系列。
  • 批准号:
    20K18979
  • 财政年份:
    2022
  • 资助金额:
    $ 22.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了