Neuroinformatics platform using machine learning and content-based image retrieval for neuroscience image data

使用机器学习和基于内容的图像检索来检索神经科学图像数据的神经信息学平台

基本信息

  • 批准号:
    10251140
  • 负责人:
  • 金额:
    $ 74.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-17 至 2022-09-16
  • 项目状态:
    已结题

项目摘要

This project aims to develop NeuroManager™, an innovative neuroinformatics platform for advanced parsing, storing, aggregating, analyzing and sharing of complex neuroscience image data. A core technology that we will develop in NeuroManager will be Image Content Analysis for Retrieval Using Semantics (ICARUS), a novel, intelligent neuroimage curation system that will enable image retrieval based on visual appearance or by semantic concept. ICARUS will use machine learning applied to content-based image retrieval - (CBIR) to build and refine models that summarize microscopic and macroscopic image appearance and automatically assign semantic concepts to neuroimages. Neuroscience research generates extensive, multifaceted data that is considerably under-utilized because access to original raw data is typically maintained by the source lab. On the other hand, there are many advantages in sharing complex image data in neuroscience research, including the opportunity for separate analysis of raw data by other scientists from another perspective and improved reproducibility of scientific studies and their results. Unfortunately, none of the neuroscience data sharing options that exist today fulfill all the needs of neuroscientists. To solve this problem, NeuroManager will include the following distinct, significant innovations: (i) versatility for handling two-dimensional (2D) and three-dimensional neuroimaging data sets from animal models and humans; (ii) functionality to share complex datasets that extends secure, privacy-controlled paradigms from institutional, laboratory-based and even public domains; (iii) flexibility to implement NeuroManager within an institute’s IT infrastructure, or on most cloud-based virtualized environments including Azure, Google Cloud Services and Amazon Web Services; (iv) and most importantly, the ICARUS technology for CBIR in neuroimaging data sets. The benefit of NeuroManager for the neuroscience research community, pharmacological and biotechnological R&D, and society in general will be to foster collaboration between scientists and institutions, promoting innovation through combined expertise in an interdisciplinary atmosphere. This will open new horizons for better understanding the neuropathology associated with several human neuropsychiatric and neurological conditions at various levels (i.e., macroscopically, microscopically, subcellularly and functionally), ultimately leading to an improved basis for developing novel treatment and prevention strategies for complex brain diseases. In Phase I we will prove feasibility of this novel technology by developing prototype software that will perform CBIR on 2D whole slide images of coronal sections of entire mouse brains from ongoing research projects of our collaborators. Work in Phase II will focus on developing the commercial software product that will include all of the innovations mentioned above. A competing technology with comparable functionality, addressing the full breadth of needs for modern neuroscience research, is currently not available commercially or otherwise.
该项目旨在开发神经管理器™,这是一个用于高级解析的创新神经信息学平台, 存储、聚合、分析和共享复杂的神经科学图像数据。我们将采用的核心技术 NeuroManager中的开发将是使用语义进行图像内容分析(ICARUS), 智能神经图像管理系统,将支持基于视觉外观或通过 语义概念。Icarus将使用机器学习应用于基于内容的图像检索(CBIR)来构建 并优化总结微观和宏观图像外观的模型,并自动分配 从语义概念到神经图像。神经科学研究产生了广泛的、多方面的数据, 利用率很低,因为对原始原始数据的访问通常由源实验室维护。论 另一方面,在神经科学研究中共享复杂的图像数据有许多优势,包括 其他科学家从另一个角度单独分析原始数据的机会和改进 科学研究及其结果的重现性。不幸的是,没有一个神经科学数据共享选项 今天存在的可以满足神经科学家的所有需求。为了解决这个问题,NeuroManager将包括 以下是独特的重大创新:(I)处理二维(2D)和三维 来自动物模型和人类的神经成像数据集;(Ii)共享扩展的复杂数据集的功能 来自机构、实验室甚至公共领域的安全、隐私受控的范例;(3)灵活性 在研究所的IT基础设施中或在大多数基于云的虚拟化环境中实施NeuroManager 环境,包括Azure、Google Cloud Services和Amazon Web Services;(Iv)最重要的是, 用于神经成像数据集的CBIR的ICARUS技术。NeuroManager对神经科学的益处 研究界、药学和生物技术研发以及整个社会都将促进 科学家和机构之间的合作,通过在 跨学科的氛围。这将为更好地理解神经病理学开辟新的视野。 在不同水平上与几种人类神经精神和神经状况相关(即, 宏观上、微观上、亚细胞上和功能上),最终导致 为复杂的脑部疾病开发新的治疗和预防策略。在第一阶段,我们将证明 通过开发对2D整个幻灯片执行CBIR的原型软件来验证这项新技术的可行性 来自我们的合作者正在进行的研究项目的整个小鼠大脑的冠状切片的图像。在.工作 第二阶段将专注于开发商业软件产品,其中将包括所有创新 如上所述。具有类似功能的竞争技术,可满足各种需求 对于现代神经科学研究,目前还不能商业化或以其他方式获得。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Angstman其他文献

Paul Angstman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Angstman', 18)}}的其他基金

Next generation axonal quantification and classification using AI
使用人工智能的下一代轴突量化和分类
  • 批准号:
    10609151
  • 财政年份:
    2022
  • 资助金额:
    $ 74.72万
  • 项目类别:
Next generation axonal quantification and classification using AI
使用人工智能的下一代轴突量化和分类
  • 批准号:
    10324805
  • 财政年份:
    2021
  • 资助金额:
    $ 74.72万
  • 项目类别:
Neuroinformatics platform using machine learning and content-based image retrieval for neuroscience image data
使用机器学习和基于内容的图像检索来检索神经科学图像数据的神经信息学平台
  • 批准号:
    9797689
  • 财政年份:
    2018
  • 资助金额:
    $ 74.72万
  • 项目类别:
Automated 3D quantitative analysis of dendritic spines imaged with light microscopy
使用光学显微镜成像的树突棘的自动 3D 定量分析
  • 批准号:
    9255387
  • 财政年份:
    2016
  • 资助金额:
    $ 74.72万
  • 项目类别:
Automated 3D quantitative analysis of dendritic spines imaged with light microscopy
使用光学显微镜成像的树突棘的自动 3D 定量分析
  • 批准号:
    9356578
  • 财政年份:
    2016
  • 资助金额:
    $ 74.72万
  • 项目类别:
System for advanced automated 3D microvascular analysis in neuroplasticity
用于神经可塑性的先进自动化 3D 微血管分析系统
  • 批准号:
    8592455
  • 财政年份:
    2013
  • 资助金额:
    $ 74.72万
  • 项目类别:
System for advanced automated 3D microvascular analysis in neuroplasticity
用于神经可塑性的先进自动化 3D 微血管分析系统
  • 批准号:
    9332468
  • 财政年份:
    2013
  • 资助金额:
    $ 74.72万
  • 项目类别:
System for advanced automated 3D microvascular analysis in neuroplasticity
用于神经可塑性的先进自动化 3D 微血管分析系统
  • 批准号:
    8731273
  • 财政年份:
    2013
  • 资助金额:
    $ 74.72万
  • 项目类别:
Automated 3D quantitative analysis of dendritic spines imaged with light microsco
使用光学显微镜成像的树突棘的自动 3D 定量分析
  • 批准号:
    8643290
  • 财政年份:
    2012
  • 资助金额:
    $ 74.72万
  • 项目类别:
Microscope Based Brain Positioning System for Anatomical Navigation
用于解剖导航的基于显微镜的大脑定位系统
  • 批准号:
    8315095
  • 财政年份:
    2012
  • 资助金额:
    $ 74.72万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 74.72万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 74.72万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了