Next generation axonal quantification and classification using AI

使用人工智能的下一代轴突量化和分类

基本信息

  • 批准号:
    10609151
  • 负责人:
  • 金额:
    $ 5.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2022-08-18
  • 项目状态:
    已结题

项目摘要

Abstract This Lab to Marketplace project describes the development of HyperAxon™, highly innovative software for performing automated segmentation, tracing, reconstruction and quantitative analysis of all axonal fibers visible in three-dimensional (3D) microscopic images of central nervous system (CNS) areas, even those with extremely high axonal fiber density. Accurate and rigorous analysis of all axonal fibers visible in 3D microscopic images of CNS tissue of non-transgenic and transgenic animal models as well as in human post mortem CNS tissue holds the promise of novel insights into physiological neural network connectivity patterns as well as into the neuropathological underpinnings of alterations in connectivity associated with human neuropsychiatric and neurological disorders. However, this cannot be achieved with contemporary, computer-assisted tracing and reconstruction methods, which currently are the gold standard for investigating axonal fibers, because these methods primarily address tracing and reconstruction of only a limited number of individual axonal fibers. HyperAxon will be based on the highly innovative artificial intelligence technology Learning-based Tracing of Dense Axonal Fibers (LTDAF) that was recently developed at MIT Lincoln Laboratory (MIT LL) (Lexington, MA). This project will build upon the original, lab-built LTDAF technology to create commercial software for wide- spread dissemination of this important new technology. Dissemination of this technology via a Lab to Marketplace commercial product is consistent with NIMH goals and will result in the technology having a significant impact on neuroscience research. The game-changing innovation in HyperAxon is the ability to automatically (i) segment, trace and reconstruct all axonal fibers visible in 3D microscopic images of CNS areas with high axonal fiber density, (ii) identify axonal branch points, (iii) resolve axonal fibers of passage from axonal fibers that make presumptive synapses in target regions, (iv) identify axonal fibers showing acute axonal injury and (v) precisely quantify alterations in number and density of axonal fibers in CNS tissue. Based on published pilot work performed at MIT LL, we are convinced that HyperAxon will be impactful in the field of neuroscience research and will enable substantial advancements in research on alterations in CNS circuitry associated with neurodevelopmental, neuropsychiatric, neurodegenerative and neurological disorders. Ultimately, this will result in an improved basis for developing novel treatment strategies for a wide spectrum of complex brain diseases. In Phase I we will demonstrate feasibility of this novel technology by developing prototype software; work in Phase II will focus on creating the full functionality of HyperAxon for commercial release. We will perform extensive feasibility studies, product validation and usability studies of HyperAxon in close collaboration with MIT LL and our academic collaboration partners. A competing technology is not available.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Angstman其他文献

Paul Angstman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Angstman', 18)}}的其他基金

Next generation axonal quantification and classification using AI
使用人工智能的下一代轴突量化和分类
  • 批准号:
    10324805
  • 财政年份:
    2021
  • 资助金额:
    $ 5.5万
  • 项目类别:
Neuroinformatics platform using machine learning and content-based image retrieval for neuroscience image data
使用机器学习和基于内容的图像检索来检索神经科学图像数据的神经信息学平台
  • 批准号:
    9797689
  • 财政年份:
    2018
  • 资助金额:
    $ 5.5万
  • 项目类别:
Neuroinformatics platform using machine learning and content-based image retrieval for neuroscience image data
使用机器学习和基于内容的图像检索来检索神经科学图像数据的神经信息学平台
  • 批准号:
    10251140
  • 财政年份:
    2018
  • 资助金额:
    $ 5.5万
  • 项目类别:
Automated 3D quantitative analysis of dendritic spines imaged with light microscopy
使用光学显微镜成像的树突棘的自动 3D 定量分析
  • 批准号:
    9255387
  • 财政年份:
    2016
  • 资助金额:
    $ 5.5万
  • 项目类别:
Automated 3D quantitative analysis of dendritic spines imaged with light microscopy
使用光学显微镜成像的树突棘的自动 3D 定量分析
  • 批准号:
    9356578
  • 财政年份:
    2016
  • 资助金额:
    $ 5.5万
  • 项目类别:
System for advanced automated 3D microvascular analysis in neuroplasticity
用于神经可塑性的先进自动化 3D 微血管分析系统
  • 批准号:
    8592455
  • 财政年份:
    2013
  • 资助金额:
    $ 5.5万
  • 项目类别:
System for advanced automated 3D microvascular analysis in neuroplasticity
用于神经可塑性的先进自动化 3D 微血管分析系统
  • 批准号:
    9332468
  • 财政年份:
    2013
  • 资助金额:
    $ 5.5万
  • 项目类别:
System for advanced automated 3D microvascular analysis in neuroplasticity
用于神经可塑性的先进自动化 3D 微血管分析系统
  • 批准号:
    8731273
  • 财政年份:
    2013
  • 资助金额:
    $ 5.5万
  • 项目类别:
Automated 3D quantitative analysis of dendritic spines imaged with light microsco
使用光学显微镜成像的树突棘的自动 3D 定量分析
  • 批准号:
    8643290
  • 财政年份:
    2012
  • 资助金额:
    $ 5.5万
  • 项目类别:
Microscope Based Brain Positioning System for Anatomical Navigation
用于解剖导航的基于显微镜的大脑定位系统
  • 批准号:
    8315095
  • 财政年份:
    2012
  • 资助金额:
    $ 5.5万
  • 项目类别:

相似海外基金

Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了