Administrative Core

行政核心

基本信息

项目摘要

Abstract This project will use national and local incidence, mortality and testing data, with GIS driven agent-based disease modelling to identify the “neighborhood effects” that drive the uneven patterns of transmission and serious outcomes from COVID-19. Neighborhood environments have been associated with chronic disease mortality, disability, cumulative stress, cognitive decline, loss of physical functioning. These same neighborhood effects are implicit in exacerbating disparities in the spread and health outcomes of COVID-19, however the exact mechanisms and the magnitude of the impact of entrenched social disparities specifically on COVID-19 outcomes are not yet known. The key hypothesis is that agent based disease spread modeling of the existing retrospective COVID-19 data sources at the national and local levels with geospatial data input and spatial-temporal analysis will provide powerful knowledge on the structural factors that influenced the pandemic’s spread in local areas and will facilitate the development of valuable recommendations on how to mitigate current and future disparities in impacts of COVID-19 and other future infectious epidemics and pandemics. We will test our key hypothesis and accomplish our objectives via the following Specific Aims. Determine what Counties factors related to the social determinants of health have influenced the spread of coronavirus in the United States. 1) Determine, within the identified Counties, which social determinants have had significant impact on either spread or inhibit spread of CV-19. 2) Determine which populations groups have been impacted more severely in these local contexts and why? 3) Determine what specific recommendations can be made from these findings? The expected outcomes of this research are published manuscripts and scholarly presentations that provide science- based recommendations on the how health authorities and policy makers can proactively address social factors that amplify disease and poor health outcomes in certain communities.
摘要 该项目将使用国家和地方的发病率、死亡率和检测数据,并由地理信息系统驱动 基于代理的疾病建模,以确定驱动不均衡的“邻里效应” COVID-19的传播模式和严重后果。邻里环境 与慢性病死亡率、残疾、累积压力、认知能力 身体机能衰退同样的邻里效应也隐含在 加剧了COVID-19传播和健康结果的差异,但确切的 社会不平等根深蒂固的影响,特别是 COVID-19的结果尚不清楚。关键的假设是基于病原体的疾病传播 在国家和地方层面对现有的回顾性COVID-19数据源进行建模 地理空间数据输入和时空分析将提供关于 结构性因素影响了大流行病在当地的传播,并将促进 就如何减少目前和今后的差距提出宝贵建议, COVID-19和其他未来传染性流行病和大流行病的影响。我们将测试我们的钥匙 假设并通过以下具体目标实现我们的目标。 确定与健康的社会决定因素相关的县因素影响了 冠状病毒在美国的传播。 1)在确定的县内,确定哪些社会决定因素对 影响CV-19扩散或抑制CV-19扩散。 2)确定哪些人群在这些地方受到的影响更严重 背景和为什么? 3)确定从这些发现中可以提出哪些具体建议? 这项研究的预期成果是出版的手稿和学术报告 为卫生当局和政策制定者提供科学建议 可以积极主动地解决在某些地区放大疾病和不良健康结果的社会因素, 社区.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jaydutt V. Vadgama其他文献

CCL2/CCR2 signaling in cancer pathogenesis
  • DOI:
    10.1186/s12964-020-00589-8
  • 发表时间:
    2020-05-29
  • 期刊:
  • 影响因子:
    8.900
  • 作者:
    Qiongyu Hao;Jaydutt V. Vadgama;Piwen Wang
  • 通讯作者:
    Piwen Wang
RETRACTED ARTICLE: A83-01 inhibits TGF-β-induced upregulation of Wnt3 and epithelial to mesenchymal transition in HER2-overexpressing breast cancer cells
  • DOI:
    10.1007/s10549-017-4211-y
  • 发表时间:
    2017-03-23
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Yanyuan Wu;Trinh Tran;Sami Dwabe;Marianna Sarkissyan;Juri Kim;Miguel Nava;Sheilah Clayton;Richard Pietras;Robin Farias-Eisner;Jaydutt V. Vadgama
  • 通讯作者:
    Jaydutt V. Vadgama
Retraction Note: A83-01 inhibits TGF-β-induced upregulation of Wnt3 and epithelial to mesenchymal transition in HER2-overexpressing breast cancer cells
  • DOI:
    10.1007/s10549-024-07371-1
  • 发表时间:
    2024-05-10
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Yanyuan Wu;Trinh Tran;Sami Dwabe;Marianna Sarkissyan;Juri Kim;Miguel Nava;Sheilah Clayton;Richard Pietras;Robin Farias-Eisner;Jaydutt V. Vadgama
  • 通讯作者:
    Jaydutt V. Vadgama

Jaydutt V. Vadgama的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jaydutt V. Vadgama', 18)}}的其他基金

Workshop for Junior Biostatisticians in Health Research
健康研究初级生物统计学家研讨会
  • 批准号:
    10655012
  • 财政年份:
    2022
  • 资助金额:
    $ 17.94万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10173020
  • 财政年份:
    2020
  • 资助金额:
    $ 17.94万
  • 项目类别:
Accelerating Excellence in Translational Science (AXIS) - Admin Supplement
加速转化科学卓越 (AXIS) - 管理补充
  • 批准号:
    10212868
  • 财政年份:
    2009
  • 资助金额:
    $ 17.94万
  • 项目类别:
Charles Drew University/UCLA Cancer Center Partnership to Eliminate Cancer Health
查尔斯德鲁大学/加州大学洛杉矶分校癌症中心合作消除癌症健康
  • 批准号:
    8137688
  • 财政年份:
    2009
  • 资助金额:
    $ 17.94万
  • 项目类别:
Charles Drew University/UCLA Cancer Center Partnership to Eliminate Cancer Health
查尔斯德鲁大学/加州大学洛杉矶分校癌症中心合作消除癌症健康
  • 批准号:
    8530618
  • 财政年份:
    2009
  • 资助金额:
    $ 17.94万
  • 项目类别:
Charles Drew University/UCLA Cancer Center Partnership to Eliminate Cancer Health
查尔斯德鲁大学/加州大学洛杉矶分校癌症中心合作消除癌症健康
  • 批准号:
    8720904
  • 财政年份:
    2009
  • 资助金额:
    $ 17.94万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10265665
  • 财政年份:
    2009
  • 资助金额:
    $ 17.94万
  • 项目类别:
Charles Drew University/UCLA Cancer Center Partnership to Eliminate Cancer Health
查尔斯德鲁大学/加州大学洛杉矶分校癌症中心合作消除癌症健康
  • 批准号:
    7943137
  • 财政年份:
    2009
  • 资助金额:
    $ 17.94万
  • 项目类别:
CDU-UCLA Cancer Center Partnership to Eliminate Cancer Health Disparities
CDU-UCLA 癌症中心合作消除癌症健康差异
  • 批准号:
    9150511
  • 财政年份:
    2009
  • 资助金额:
    $ 17.94万
  • 项目类别:
Accelerating Excellence in Translational Science (AXIS)
加速转化科学的卓越发展 (AXIS)
  • 批准号:
    10283209
  • 财政年份:
    2009
  • 资助金额:
    $ 17.94万
  • 项目类别:

相似国自然基金

层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
  • 批准号:
    2021JJ40433
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
  • 批准号:
    32001603
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
AREA国际经济模型的移植.改进和应用
  • 批准号:
    18870435
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Spatial modelling of COVID-19 at the small area level using population movement data
使用人口流动数据在小区域层面对 COVID-19 进行空间建模
  • 批准号:
    559264-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Understanding the COVID-19 Journeys and Vaccine Experiences of Racialized and Immigrant Communities in the Greater Toronto Area
了解大多伦多地区种族化和移民社区的 COVID-19 旅程和疫苗体验
  • 批准号:
    459238
  • 财政年份:
    2021
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Operating Grants
SCC-CIVIC-PG Track B: A Visualization Tool and Assessment Framework for Civic Technology Use in the DMV Area: The Case of 311 Systems During the COVID-19 Outbreak
SCC-CIVIC-PG Track B:DMV 地区公民技术使用的可视化工具和评估框架:COVID-19 爆发期间 311 系统的案例
  • 批准号:
    2043900
  • 财政年份:
    2021
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Standard Grant
Comparative studies on labour issues on agriculture and rural area in post-COVID-19 era
后COVID-19时代农业农村劳动问题比较研究
  • 批准号:
    21H00634
  • 财政年份:
    2021
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Spatial modelling of COVID-19 at the small area level using population movement data
使用人口流动数据在小区域层面对 COVID-19 进行空间建模
  • 批准号:
    559264-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Covid-19 as amplifier of social inequality- SMall ARea Analyses with German neighborhood Data (SMARAGD)
Covid-19 是社会不平等的放大器 - 使用德国社区数据进行小面积分析 (SMARAGD)
  • 批准号:
    492351283
  • 财政年份:
    2021
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Research Grants
Mobilizing the Chinese Immigrant Community and Battling the Potential COVID-19 outbreak in the Greater Toronto Area: Gathering essential information, creating a mutual support quarantine network and assessing psychological impacts
动员华人移民社区,应对大多伦多地区潜在的 COVID-19 疫情:收集重要信息,建立互助隔离网络并评估心理影响
  • 批准号:
    422630
  • 财政年份:
    2020
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Operating Grants
Build and Broaden: The Long-Term Impact of COVID-19 in Hispanic Communities in the Tri-State Area
建设和扩大:COVID-19 对三州地区拉美裔社区的长期影响
  • 批准号:
    2038458
  • 财政年份:
    2020
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Standard Grant
COVID 19 Supplement - NIH TCF TASK AREA B-1
COVID 19 补充材料 - NIH TCF 任务领域 B-1
  • 批准号:
    10301515
  • 财政年份:
    2020
  • 资助金额:
    $ 17.94万
  • 项目类别:
RAPID: Impact of CoVID-19 Stay-at-Home Orders on urban stream quality in Denver Metro Area with application for future urban living scenarios
RAPID:CoVID-19 居家令对丹佛都会区城市流质量的影响及其在未来城市生活场景中的应用
  • 批准号:
    2031614
  • 财政年份:
    2020
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了