Methods for quantifying selection in evolving populations
量化进化群体选择的方法
基本信息
- 批准号:10610349
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-05-02
- 项目状态:已结题
- 来源:
- 关键词:AccountingBacterial Antibiotic ResistanceBiological AssayCommunitiesComplexComputer softwareComputing MethodologiesDataDevelopmentDrug resistanceEvolutionGeneticGenetic EpistasisGenotypeGoalsGrowthHIV-1HumanImmune EvasionImmune responseImmunotherapeutic agentMalignant NeoplasmsMethodsMutagenesisMutationPhenotypePhysicsPopulationProcessPublic HealthResearchRoleScienceStatistical MethodsTechniquesTimeTranslatingadaptive immune responsedriver mutationfitnessgenetic linkagehost-pathogen coevolutionimprovednovel strategiespathogenprogramsprotein functiontool
项目摘要
PROJECT SUMMARY
Understanding selection in complex evolving populations is a common theme across the biomedical sciences.
Examples include the characterization of driver mutations that lead to cancer, pathogen evolution to escape
human immune responses, and the growth of antibiotic-resistant bacteria. Recent experimental advances have
substantially increased the availability of temporal genetic data, which could be exploited to detect selection with
greater accuracy and precision. However, inferring selection from temporal genetic data remains technically
challenging. The central goal of my research is to develop and apply efficient computational and statistical
methods to quantitatively describe evolutionary dynamics, including the role of selection in evolution. Drawing
on novel approaches derived from statistical physics, we will develop robust, scalable, and interpretable methods
to infer the fitness effects of mutations from temporal genetic data, accounting for features such as genetic
linkage, epistasis, and time-varying selection. These methods will be integrated into a software package in order
to make them more widely accessible to the community. We will focus on two specific applications: 1)
investigating the evolution of human immunodeficiency virus (HIV)-1 to evade adaptive immune responses, a
prototypical example of rapid and complex evolution, and 2) interpreting massively parallel assays of protein
function. Our research program will create new tools for understanding complex evolving populations and apply
them to elucidate host-pathogen coevolutionary dynamics and to improve widely used high-throughput
experimental techniques.
项目摘要
理解复杂进化群体中的选择是生物医学科学的一个共同主题。
例子包括表征导致癌症的驱动突变,病原体进化以逃避
人类免疫反应和抗药性细菌的生长。最近的实验进展
大大增加了时间遗传数据的可用性,可用于检测选择,
更高的准确性和精确度。然而,从时间遗传数据推断选择仍然是技术上的,
挑战性我研究的中心目标是开发和应用有效的计算和统计
定量描述进化动力学的方法,包括选择在进化中的作用。绘图
在从统计物理学衍生出来的新方法上,我们将开发出稳健的、可扩展的和可解释的方法
从时间遗传数据中推断突变的适应性效应,考虑到诸如遗传
连锁、上位性和时变选择。这些方法将被集成到一个软件包中,
使它们更广泛地为社区所用。我们将重点介绍两个具体应用:1)
研究人类免疫缺陷病毒(HIV)-1逃避适应性免疫反应的进化,
快速和复杂进化的典型例子,2)解释蛋白质的大规模平行测定
功能我们的研究计划将创造新的工具来理解复杂的进化群体,并应用于
他们阐明宿主-病原体协同进化动力学,并提高广泛使用的高通量
实验技术
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John P Barton其他文献
John P Barton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John P Barton', 18)}}的其他基金
Methods for quantifying selection in evolving populations
量化进化群体选择的方法
- 批准号:
10029492 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Methods for quantifying selection in evolving populations
量化进化群体选择的方法
- 批准号:
10200848 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Methods for quantifying selection in evolving populations
量化进化群体选择的方法
- 批准号:
10385776 - 财政年份:2020
- 资助金额:
-- - 项目类别:
相似海外基金
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
- 批准号:
MR/X009580/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Atomically precise, multi-ligand functionalised metal nanoclusters to combat bacterial antibiotic resistance
原子精确的多配体功能化金属纳米簇可对抗细菌抗生素耐药性
- 批准号:
2882405 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Bacterial antibiotic resistance: structure, mechanism and inhibition of ABC transporters responsible for drug efflux and cell wall biogenesis.
细菌抗生素耐药性:负责药物流出和细胞壁生物发生的 ABC 转运蛋白的结构、机制和抑制。
- 批准号:
MR/V000616/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
- 批准号:
MR/S015426/1 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Fellowship
Bacterial antibiotic resistance in swine production.
养猪生产中的细菌抗生素耐药性。
- 批准号:
414966-2011 - 财政年份:2011
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Effects of veterinary medicines in manure on the abundance and transfer of bacterial antibiotic resistance genes in soils in dependence of varying soil moisture conditions
不同土壤湿度条件下粪便中兽药对土壤中细菌抗生素抗性基因丰度和转移的影响
- 批准号:
201595047 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Units
STRUCTURAL STUDIES ON ENZYMES IMPLICATED IN BACTERIAL ANTIBIOTIC RESISTANCE
细菌抗生素耐药性相关酶的结构研究
- 批准号:
8362302 - 财政年份:2011
- 资助金额:
-- - 项目类别:
STRUCTURAL STUDIES ON ENZYMES IMPLICATED IN BACTERIAL ANTIBIOTIC RESISTANCE
细菌抗生素耐药性相关酶的结构研究
- 批准号:
8170303 - 财政年份:2010
- 资助金额:
-- - 项目类别: